
PCPP IT University, E2019

Exercises week 7
Thursday 10 October 2019

Goal of the exercises
The goal of this week’s exercises is to make sure that you can achieve good performance and scalability of lock-
based concurrent software, using finer-grained locks, lock striping, the Java class library’s atomically updatable
numbers, immutability and the visibility effects of volatiles and atomics.

Deliverables
Hand in a self-contained PDF file which include your answers and all relevant code snippets. Submit your source
files for documentation. We should be able to correct your assignment solely based on the PDF and only need to
refer to the source code if anything is unclear.

Do this first
Get and unpack this week’s example code in zip file pcpp-week07.zip on the course homepage.

File TestStripedMap.java contains implementations of several thread-safe hash map classes:

(A) A complete implementation of SynchronizedMap<K,V> which follows the Java monitor pattern: all muta-
ble fields are private, all public methods are synchronized, and no internal data structures escape.

(B) A partial implementation of StripedMap<K,V> which does not follow the Java monitor pattern, but divides
the buckets table into stripes, locking each stripe both on read and write accesses. This is the subject of
Exercise 7.1.

(C) A partial implementation of StripedWriteMap<K,V> which also divides the buckets table into stripes, but
locks each stripe only on write accesses. Read accesses do not take locks at all, but their correctness is
assured — we hope — by (1) working on immutable item nodes, and (2) ensuring visibility of writes by
careful use of atomics and volatiles. This is the subject of Exercise 7.2.

(D) A simple wrapper WrapConcurrentHashMap<K,V> around Java’s ConcurrentHashMap<K,V>, for com-
parison.

Exercise 7.1 The SynchronizedMap<K,V> implementation scales (and therefore performs) poorly on a multicore
computer because of all the locking: only one thread at a time can read or write the hash map.

The lecture showed that scalability can be considerably improved by lock striping. Instead of locking on the
entire table of buckets, one divides it into a number of stripes (here 32), and locks only the single stripe that is
going to be read or updated.

This is the idea in the StripedMap<K,V> class, whose implementation in file TestStripedMap.java contain
only methods containsKey and put and some auxiliary methods.

Your task below is to implement the remaining public methods, as described by interface OurMap<K,V>.
They are very similar to the method implementations in class SynchronizedMap<K,V>, except that they do not
lock the entire hash map, only the relevant stripe.

1. Implement method V get(K k) using lock striping. It is similar to containsKey, but returns the value
associated with key k if it is in the map, otherwise null. It should use the ItemNode.search auxiliary
method.

2. Implement method int size() using lock striping; it should return the total number of entries in the
hash map. The size of stripe s is maintained in sizes[s], so the size() method could simply compute
the sum of these values, locking each stripe in turn before accessing its value.

Explain why it is important to lock stripe s when reading its size from sizes[s].

3. Implement method V putIfAbsent(K k, V v) using lock striping. It must work as in Java’s Concur-
rentHashMap, that is, atomically do the following: check whether key k is already in the map; if it is,
return the associated value; and if it is not, add (k,v) to the map and return null. The implementation can

1



PCPP IT University, E2019

be similar to putIfAbsent in class SynchronizedMap<K,V> but should of course only lock on the stripe
that will hold key k. It should use the ItemNode.search auxiliary method. Remember to increment the
relevant sizes[stripe] count if any entry was added. Ignore reallocateBuckets for now.

4. Extend method putIfAbsent to call reallocateBuckets when the bucket lists grow too long. For
simplicity, you can test whether the size of a stripe is greater than the number of buckets divided by the
number of stripes, as in method put.

5. Implement method V remove(K k) using lock striping. Again very similar to SynchronizedMap<K,V>.
Remember to decrement the relevant sizes[stripe] count if any entry was removed.

6. Implement method void forEach(Consumer<K,V> consumer). Apparently, this may be imple-
mented in two ways: either (1) iterate through the buckets as in the SynchronizedMap<K,V> implementa-
tion; or (2) iterate over the stripes, and for each stripe iterate over the buckets that belong to that stripe.

It seems that (1) requires locking on all stripes before iterating over the buckets. Otherwise an intervening
reallocateBuckets call on another thread may replace the buckets array with one of a different
size between observing the length of the array and accessing its elements. It does not work to just obtain
a copy bs of the buckets field, because reallocateBuckets destructively redistributes item node
lists from the old buckets array to the new one.

It seems that (2) can be implemented by locking only stripe-wise and then iterating over the stripe’s buckets.
While holding the lock on a stripe, no reallocateBuckets can happen.

Explain what version you have implemented and why.

7. You may use method testMap(map) for very basic single-threaded functional testing while making the
above method implementations. See how to call it in method testAllMaps. To actually enable the
assert statements, run with the -ea option:

java -ea TestStripedMap

8. Measure the performance of SynchronizedMap<K,V> and StripedMap<K,V> by timing calls to method
exerciseMap. Report the results from your hardware and discuss whether they are as expected.

9. What advantages are there to using a small number (say 32 or 16) of stripes instead of simply having a stripe
for each entry in the buckets table? Discuss.

10. Why can using 32 stripes improve performance even if one never runs more than, say, 16 threads? Discuss.

11. A comment in the example source code says that it is important for thread-safety of StripedMap and Striped-
WriteMap that the number of buckets is a multiple of the number of stripes.

Give a scenario that demonstrates the lack of thread-safety when the number of buckets is not a multiple
of the number of stripes. For instance, use 3 buckets and 2 stripes, and consider two concurrent calls
put(k1,v1) and put(k2,v2) where the hash code of k1 is 5 and the hashcode of k2 is 8.

Note that method reallocateBuckets has been provided for you. Its auxiliary method lockAllAndThen
uses recursion to take all the stripe lock; this is the only way in Java to take a variable number of intrinsic locks.

Exercise 7.2 The striped hash map in class StripedMap<K,V> scales better with more threads than the Synchro-
nizedMap<K,V> hash map. However, it can be further improved by locking a stripe only when writing, not when
reading, so that many reads can proceed concurrently without locking. This idea is outlined in class Striped-
WriteMap<K,V>, which is a somewhat subtle undertaking, based on several ideas that are different from both
SynchronizedMap<K,V> and StripedMap<K,V>.

First, the item nodes are made immutable, all fields of class ItemNode<K,V> are final. That means that as
soon as a read access (containsKey, get or forEach) has obtained a reference to a list of item nodes in a
bucket, it need not be concerned with atomicity or visibility: nothing it accesses can be affected by other threads.

Second, the slice sizes will now be represented by an AtomicIntegerArray so that no locking is needed when
incrementing and decrementing the stripe sizes. It also ensures that a thread executing the size() method can
see the increments and decrements made by threads that put, putIfAbsent and remove entries.

2



PCPP IT University, E2019

Third, the writes to and reads from the sizes array are (ab)used to ensure visibility of updates to the
buckets array. After any write to an element of buckets, sizes is written also, and before any read of
an element of buckets, sizes is read. This ensures that containsKey, get, forEach will see any writes
performed by put, putIfAbsent and remove.

Fourth, making class ItemNode<K,V> immutable means that put and remove may need to copy part of the
list of item nodes in a bucket, but those lists should in any case hold at most a few items (otherwise the hash map
is slow), the allocation of a new item node is fast, the cost appears to be outweighed but the time saved on not
locking, and parts of the code become much neater this way.

Some ideas in StripedWriteMap<K,V> are inspired by the implementation of Java’s ConcurrentHashMap,
which however uses many more sophisticated techniques.

1. Implement method V get(K k). It is similar to containsKey, but returns the value associated with
key k if it is in the map, otherwise null. It should use the ItemNode.search auxiliary method, and
for visibility reasons, read the stripe’s size before reading the buckets array entry.

2. Implement method int size(). This is very straightforward: simply compute the sum of the stripe
sizes. Since these are represented in an AtomicIntegerArray, all writes are visible to this method’s reads; no
locking is needed.

3. Implement method V putIfAbsent(K k, V v). You must lock on the relevant stripe. Use auxiliary
method ItemNode.search(bl, k, old) to determine whether k is already in the hash map, where
bl is the bucket list reference obtained from buckets[hash]. If yes, then do nothing; else create a new
item node from k, v and bl, and update the buckets table with that. Remember to update the stripe size
if an entry was added.

Why do you not need to write to the stripe size if nothing was added?

4. Implement method V remove(K k). Lock on the relevant stripe. Use ItemNode.delete(bl, k,
old) to delete the entry with key k, if any, from bucket list bl, and update the buckets table with the result.
Remember to update the stripe size if an entry was removed.

5. Implement method void forEach(Consumer<K,V> consumer). Unlike in Exercise 7.1.6 there
seems to be no need to lock anything while you iterate over the buckets table and the item node lists, since
the latter are immutable and assignment to the buckets array entries are atomic. But to protect against
the redistribution effect of an intervening reallocateBuckets, you must either read the buckets
reference into a local variable bs as the first thing and then refer to bs during the iteration over buckets or
stripes; or iterate stripewise and read the buckets reference into a local variable bs before iterating over
the stripe’s buckets. Additionally, to ensure visibility of writes to the buckets array entries, you must read
the stripe’s size before iterating over its buckets.

6. Measure the performance of SynchronizedMap<K,V>, StripedMap<K,V> StripedWriteMap<K,V> and
WrapConcurrentHashMap<K,V> using method exerciseAllMaps. Report the results and discuss whether
they are as expected.

7. (Optional, only really interesting if you have access to a computer with many cores) Measure the scalability
of the four hash map implementations by running method timeAllMaps. Report the results, in tabular or
graphical form, and discuss the results.

3


