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International Mathematical Olympiad 2004:
For which m and n can an m X n rectangle be tiled
with "hooks’ of the following type:
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Usual way:
Store coordinates of each cell:
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Area representation

Compact way:
Store coordinates of corners.
Corner representation
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Example

________________________

Corner representation:
(0,0), (2%,0), (2", 2), (0,2") EIEERAKIENEY

________________________

Area representation:
(0,0), (1,0),(2,0),...,(2%,0),
(0,1),(1,1),(2,1),...,(2%,1),

(ojzk),(1,2k),(2,2k),...,(2k,2k)]
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Known algorithms:
Assume area representation =
Time polynomial in the area.

Goal:
Assume corner representation.

Find algorithms with running time

O(poly(n)).

n: the number of corners.

(2%, 2F)

(0, 0)
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Results

Shapes Tiling Packing
£ No holes: O(n) NP-complete
2 Holes: O(nlogn)
1 ~ ~
2 O(n) O(n’)
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iling with 2 x 2 squares

Can be done in O(A) time.

Polynomial-time algorithm but in the area of P!
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Maximum domino packing of P <> Maximum matching of G(P)

Time O(A?/?) for maximum domino packing using

Hopcroft-Karp, where A is the area of P (Berman et al. '82)

Multiple source multiple sink maximum flow: O(A) [Borradaile et
al., SICOMP 2017].
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Various hardness results for tiling and packing.

Berman et al '90:
Deciding if k 2 x 2 squares can be packed in a polyomino (with holes) is NP-complete.

Berger '66:
Deciding if a finite set of polyominos can tile the plane is Turing-complete
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Packing Dominos in O(n?) time

Assume no holes
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Let G be a graph, M a matching of G.

A path P = v1,v9,...,v9 of G is augmenting if v{ and
Vo are unmatched and (vo;,v9;01) € M, 1 =1,...,k—1
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Lemma (Berge). Let G be a
graph and M a matching of I
G which is not maximum. I
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augmenting path between two
unmatched vertices of (.
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The reduced instance

Issue: There can be exponentially long and narrow "pipes’ =
he size can be exponential.

However, any point of P = P\ @ is of distance O(n) to 0P’
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The final reduction

P Find all pipes of length at least
twice their width.

Perform the following operation
on each pipe of G(P’)

Lemma ensures that no. of , |
unmatched vertices in a maximum } :
matching remains the same
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Summing up the reduction

In reduced instance G*, each vertex is of distance O(n) to a
corner.

Thus, G* has order O(n?)

G* is planar and bipartite.

Find maximum matching M using a multiple-source multiple-sink
maximum flow alg., O(n?®log® n) time.

area(P)—V(G*)
Return | M| + 5 .




The total running time

Running time:
Compute P O(nlogn)
Compute offset O(nlogn)
Find long pipes O(nlogn)
Find maximum matching O(n log® n)



What if there are holes?
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Running time



Correctness of simple algorithm

Rs!

|3n /2] offset \\
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> 9n
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Open Problems

Can domino tiling/packing be solved faster with a
reduction to a flow problem?

Packing 2 x 2 squares is NP-complete when P has
noles. Can it be solved in polynomial time if P is
nole-free?




