
Similarity Search:
Algorithms for Sets and other High Dimensional Data

Thomas Dybdahl Ahle

Advisor: Rasmus Pagh
Submitted: March 2019

ii

Abstract

We study five fundemental problems in the field of high dimensional algo-
rithms, similarity search and machine learning. We obtain many new results,
including:

• Data structures with Las Vegas guarantees for `1-Approximate Near Neigh-
bours and Braun Blanquet Approximate Set Similarity Search with perfor-
mance matching state of the art Monte Carlo algorithms up to factors no(1).

• “Supermajorities:” The first space/time tradeoff for Approximate Set Sim-
ilarity Search, along with a number of lower bounds suggesting that the
algorithms are optimal among all Locality Sensitive Hashing (LSH) data
structures.

• The first lower bounds on approximative data structures based on the Or-
thogonal Vectors Conjecture (OVC).

• Output Sensitive LSH data structures with query time near t + nρ for out-
putting t distinct elements, where nρ is the state of the art time to output a
single element and tnρ was the previous best for t items.

• A Johnson Lindenstrauss embedding with fast multiplication on tensors (a
Tensor Sketch), with high probability guarantees for subspace- and near-
neighbour-embeddings.

Resumé

Vi kommer ind på fem fundementale problemer inden for højdimensionelle
algoritmer, similarity search og machine learning. Vi opdager mange nye resultater,
blandt andet:

• Datastrukturer med Las Vegas garantier for `1-Approksimativ Nær Nabo
og Braun Blanquet Approksimativ Mængde-similaritetssøgning der matcher
state of the art Monte Carlo algoritmer op til no(1) faktorer i køretid og plads.

• “Kvalificerede flertal:” De første tid-/plads-trade-offs for Approksimativ
Mængde-similaritetssøgning samt et antal nedre grænser der indikerer at
algoritmerne er optimale inden for Locality Sensitive Hashing (LSH) data-
strukturer.

• De første nedre grænser for approksimative datastrukturer baseret på Ort-
hogonal Vectors Conjecture (OVC).

• En Output Sensitive LSH datastrukturer med forespørgselstid næsten t + nρ

når den skal returnere t forskellige punkter. Her er nρ den tid det tager state
of the art algoritmen at returnere et enkelt element og tnρ tiden det før tog
at returnere t punkter.

• En Johnson Lindenstrauss embedding der tillader hurtig multiplikation på
tensorer (en Tensor Sketch). I modsætning til tidligere resultater er den med
høj sandsynlighed en subspapce embedding.

iii

Acknowledgements

Starting this thesis four years ago, I thought it would be all about coming up with cool
new mathematics. It mostly was, but lately I have I started to suspect that there may
be more to it.

I want to start by thanking my superb Ph.D. advisor Rasmus Pagh. I always knew
I wanted to learn from his conscientiousness and work-life balance. Working with
him I have enjoyed his open office door, always ready to listen to ideas, be they good,
bad or half baked. Even once he moved to California, he was still easy to reach and
quick to give feedback on manuscripts or job search. I may not have been the easiest
of students – always testing the limits – but when I decided to shorten my studies to
go co-found a startup, Rasmus was still supportive all the way through.

I would like to thank all my co-authors and collaborators, past, present and future.
The papers I have written with you have always been more fun, and better written,
than the once I have done on my own. Academia doesn’t always feel like a team sport,
but perhaps it should.

The entire Copenhagen algorithms society has been an important part of my
Ph.D. life. Mikkel Thorup inspired us with memorable quotes such as “Only work
on things that have 1% chance of success,” and “always celebrate breakthroughs
immediately, tomorrow they may not be.” Thore Husfeldt made sure we never forgot
the ethical ramifications of our work, and Troels Lund reminded us that not everyone
understands infinities. At ITU I want to thank Johan Sivertsen, Tobias Christiani and
Matteo Dusefante for our great office adventures and the other pagan tribes.

In the first year of my Ph.D. I would sometimes stay very long hours at the office
and even slept there once. A year into my Ph.D. I bought a house with 9 other people,
in one of the best decisions of my life. Throughout my work, the people at Gejst have
been a constant source of support, discussions, sanity and introspection. With dinner
waiting at home in the evening I finally had a good reason to leave the office.

In 2017 I visited Eric Price and the algorithms group in Austin, Texas. He and ev-
eryone there were extremely hospitable and friendly. I want to thank John Kallaugher,
Adrian Trejo Nuñez and everyone else there for making my stay enjoyable and exciting.
In general the international community around Theoretical Computer Science has
been nothing but friendly and accepting. Particularly the Locality Sensitive Hashing
group around MIT and Columbia University has been greatly inspiring, and I want to
thank Ilya Razenshteyn for many illuminating discussions.

In Austin I also met Morgan Mingle, who became a beautiful influence on my life.
So many of my greatest memories over the last two years focus around her. She is also
the only person I have never been able to interest in my research.. 1

Finally I want to thank my parents, siblings and family for their unending support.
Even as I have been absent minded and moved between countries, they have always
been there, visiting me and inviting me to occasions small as well as big.

1She did help edit this thesis though — like the acknowledgements.

Contents

Contents v

1 Introduction 1
1.1 Overview of Problems and Contributions . 2
1.2 Similarity Search . 3
1.3 Approximate Similarity Search . 4
1.4 Locality Sensitive Hashing . 5
1.5 Las Vegas Similarity Search . 8
1.6 Output Sensitive Similarity Search . 11
1.7 Hardness of Similarity Search through Orthogonal Vectors 12
1.8 Tensor Sketching . 12

2 Small Sets Need Supermajorities: Towards Optimal Hashing-based Set Similarity 15
2.1 Introduction . 15
2.2 Preliminaries . 25
2.3 Upper bounds . 26
2.4 Lower bounds . 32
2.5 Conclusion . 38
2.6 Appendix . 39

3 Optimal Las Vegas Locality Sensitive Data Structures 41
3.1 Introduction . 41
3.2 Overview . 48
3.3 Hamming Space Data Structure . 50
3.4 Set Similarity Data Structure . 55
3.5 Conclusion and Open Problems . 61
3.6 Appendix . 63

4 Parameter-free Locality Sensitive Hashing for Spherical Range Reporting 69
4.1 Introduction . 69
4.2 Preliminaries . 73
4.3 Data Structure . 75
4.4 Standard LSH, Local Expansion, and Probing the Right Level 75
4.5 Adaptive Query Algorithms . 78
4.6 A Probing Sequence in Hamming Space . 84
4.7 Conclusion . 87

vi Contents

4.8 Appendix . 88

5 On the Complexity of Inner Product Similarity Join 95
5.1 Introduction . 95
5.2 Hardness of IPS join . 102
5.3 Limitations of LSH for IPS . 108
5.4 Upper bounds . 113
5.5 Conclusion . 116

6 High Probability Tensor Sketch 117
6.1 Introduction . 117
6.2 Preliminaries . 122
6.3 Technical Overview . 124
6.4 The High Probability Tensor Sketch . 125
6.5 Fast Constructions . 127
6.6 Applications . 129
6.7 Appendix . 131

Bibliography 137

Chapter 1

Introduction

Right action is better than
knowledge, but in order to do
what is right, we must know
what is right.

Charlemagne

As the power of computing has increased, so has the responsibility given to it by
society. Machine Learning and algorithms are now asked to identify hate speech on
Facebook, piracy on YouTube, and risky borrowers at banks. These tasks all require
computations to be done on the meaning behind text, video and data, rather than
simply the characters, pixels and bits. Oddly the philosophically complex idea of
“meaning” is now commonly represented in Computer Science simply as a vector in
Rd. However, this still leaves the questions of what computations can be done, how,
and using how many resources.

For example, say we want to find duplicate posts in Facebook’s reportedly 300
billion comments a year. A classic but efficient way to represent the meaning of
documents such as a Facebook post is the “bag of words” approach. We create a vector
in {0, 1}d, indicating for every word in the English Language whether it is present in
the document or not. We would then want to find two vectors with a large overlap,
however such a task requires computations quadratic in the dataset size (here ≈ 1023),
and is thus completely unfeasible, as is shown in this thesis and work following it [1]!

The topics covered in this thesis may be seen as the “tools” to work with large data,
such as the above, or whatever its origin. Our main focus is the search problem in
which we are given an object and want to discover other objects that are approximately
similar (under some given metric). We will (1) give a new most efficient algorithm
in the case of {0, 1}d vectors, (2) study the extend to which randomness makes the
problem easier, (3) discover better ways to handle large outputs, (4) find better ways
to pre-process data, and (5) show that sometimes the problems are just provably
unfeasible.

2 Chapter 1. Introduction

1.1 Overview of Problems and Contributions

This thesis is a collection of articles, lightly edited to fit into a combined document.
Each article is devoted to a separate problem, which we briefly describe below. Further
details can be found in the later sections of this introduction.

Set Similarity Search The (wq, wu, w1, w2)-Gap Set Similarity Search problem
(GapSS) is to, given some universe U, pre-process n sets Y ⊆ (U

wu|U|)
1 such that

given a query q ∈ (U
wq|U|) if there exists y ∈ Y with |y ∩ q| ≥ w1|U|, then we can effi-

ciently return y′ ∈ Y with |y′ ∩ q| > w2|U|. GapSS generalizes nearly all Set Similarity
Search problems, including approximative sub-/superset queries and partial match, a
classic problem going back to Rivest’s PhD thesis [162].

We give a new data structure for this problem – generalizing and improving
previous state of the art algorithms such as MinHash, Chosen Path and Spherical
LSH. The algorithm gives a complete space/time trade-off for the problem, something
previously only known for data on the sphere [61]. For our technique, which is based
on so called “supermajority functions”, we give a number of lower bounds, based on
p-biased hypercontractive inequalities, showing that supermajorities are the right LSH
functions for binary data.

Las Vegas Similarity Search The Locality Sensitive Hashing, LSH, framework for
high dimensional similarity search data structures was introduced by Indyk and Mot-
wani in 1998 [95] and gave the first algorithms without an exponential dependency on
the data dimension for a large number of problems. The algorithms were randomized,
and it was a major open problem if it were possible to match the performance deter-
ministically. To this day, the closest thing we have is deterministic 3-approximation to
the nearest neighbour problem by Indyk in [94].

Second best to deterministic algorithms are Las Vegas algorithms. In this version
of the nearest neighbour problem, we are allowed to use randomness, but we must
always return the correct answer. In this thesis we show that such algorithms can
match the state of the art in the Locality Sensitive framework, improving upon a prior
algorithm of Rasmus Pagh [148] by a polynomial factor in space and query time.

Later work [185] has shown that similar techniques can handle the even more
general framework of “Data Dependent LSH”, getting us closer than ever to a full
derandomization of Indyk and Motwani.

Output Sensitive Similarity Search With LSH, finding the nearest neighbour takes
roughly Õ(nρ) time, for some constant ρ < 1. Finding the k nearest neighbours takes
time ≈ knρ. In output sensitive similarity search we would like to reduce this to
≈ k + nρ. For many practical problems, such as k-nearest neighbour classifiers and
recommendation systems, this could mean a speedup of more than a factor 100 or
1000.

In [10], together with Rasmus Pagh and Martin Aumüller we show how to achieve
query time close to the optimal. Our algorithms have the extra benefit of “parameter

1Here (S
k) denotes all subsets of S with k elements.

1.2. Similarity Search 3

freeness”, which means that the optimal LSH parameters are chosen dynamically on a
per query basis for close to no extra cost. This contrasts with classical hyper parameter
tuning of LSH, which optimizes towards the average case query. Techniques inspired
by our work was later used for so called “confirmation sampling”[64].

Maximum Inner Product Search After nearest neighbours, the perhaps most impor-
tant high dimensional search problem is Maximum Inner Product. This has is used in
virtually all multi-label machine learning classifiers, and applications ranges all the
way to finding large entries in matrix vector multiplication.

It was known since [186] that the problem is computational intractible, but in [12] I
showed together with Rasmus Pagh, Francesco Silvestri, and Ilya Razenshteyn that
even the approximate version of this problem is hard. This explains the lack of efficient
theoretical results. This work was later extended by the seminal work [1], which today
lays the foundation for all approximative SETH lower bounds.

Tensor Sketching An Oblivious Subspace Embedding M ∈ Rk×d is a matrix such
that |‖Mx‖2 − ‖x‖|2 ≤ ε for all x ∈ Rd. If M can be applied quickly to vectors on
the form x = x(1) ⊗ · · · ⊗ x(c) ∈ Rdc

we call it a Tensor Sketch [147, 155, 37]. These
have large number of applications [188], such as guaranteeing the correctness of
kernel-linear regression performed directly on the reduced vectors.

In this thesis we construct the first Tensor Sketch that needs only O(c2(ε−1k2 +
ε−2k)) rows, improving over the original ≈ 3cε−2k2[37] giving better algorithms
for many downstream applications. We also show other versions with different
rows/application time trade-offs.

See section 6.1.2 for comparisons and some recent developments.

We continue to give an overview of the areas of research touched by this thesis, and
how they are related. This contrast the introductions of the individual papers, which
are unedited and gives the picture of the litterature at the time of their publication.

1.2 Similarity Search

Similarity Search or is the task of building an index on a dataset such that given a
query, we can find the data point with the highest similarity to the query, faster that
brute force enumerating the entire dataset.

The most common version is the metric version, known as Near Neighbour Search
(NNS). Here points come from some metric space, and the similarity between two
points is their negative distance. For example for the `2 space the problem is: Given a

set X ⊆ Rd and q ∈ Rd, find x ∈ X that minimizes
√

∑d
i=1(qi − xi)2. We can however

define the problem for any any similarity function, that maps the data point and the
query into the real numbers.

The definition of similarity search is thus a strong one, and naturally contains
many important problems in areas of computer science including pattern recognition,
searching in multimedia data, vector compression, computational statistics, and data

4 Chapter 1. Introduction

s2

s1

Figure 1.1: The Approximate Similarity Search Problem: The white points are the
dataset and the black point is the query. We are guaranteed that there is a point with
similarity s1 (the yellow circle), but is satisfied with any points of similarity more than
s2 (the white circle).

mining [177]. It is also related to many other problems involving distances, such as
closest pair, diameter, minimum spanning tree and clustering.

Versions where points come from Rd have been particularly studied. “Tremendous
research effort has been devoted to this problem” – Ryan Williams [56], and for
small d many efficient algorithms are known [46]. Yet all known algorithms for
d = Ω(log n) exhibit a query time of at least n1−O(ε) when the approximation ratio is
1 + ε, approaching the brute-force query time n when ε goes to 0. A reason for this
was given in [186] as it was shown that k-SAT can be solved by a number of similarity
searches on a data structure where the similarity function is inner product [186]. Any
data structure that answers queries for this variant in time n1−ε (as well as `2 and
other equivalent distances) for any ε > 0, would break the Strong Exponential Time
Hypothesis.

The above issue, also known as “The Curse of Dimensionality” is also illustrated in
the best known algorithms for Near Neighbour Search, which all have space or time
requirements exponential in the dimension. There are algorithms with O(dO(1) log n)
query time, but using roughly nO(d) space [65, 128], and in the other end of the scale,
there are algorithms using near linear space, but the best data query time bound (on
random inputs) is on the form min(eO(d), dn) [177].

These issues have lead to the study of Approximate Similarity Search, which we
discuss next.

1.3 Approximate Similarity Search

The Approximate Similarity Search problem is defined as follows. See also fig. 1.1.

1.4. Locality Sensitive Hashing 5

Definition 1 (Approximate Similarity Search or (s1, s2)-SS). Let U be some set and
S : U ×U → R be some similarity function between pairs of points in U. Given a set P ⊆ U,
design a data structure that supports the following operation: For any query q ∈ U, if there
exists p ∈ P such that S(p, q) ≥ s1, find a point p′ ∈ P such that S(q, p′) ≥ s2.

In his thesis [92], Piotr Indyk showed that the above definition is the right one
for many of the applications described above. For problems such as furthest neigh-
bour, closest pair, minimum spanning tree, facility location, bottleneck matching and
pattern matching, reductions to Approximate Similarity Search yield state of the art
approximate algorithms for those problems.

Curiously algorithms for this version of Similarity Search also tends to yield very
good algorithms for the exact version of the previous section [64]. A reason for this
is the so called “gap phenomenon”: Often most of the data points are much further
from the query than the nearest neighbour [161].

It is intuitive to think of the dataset as a set of random vectors in {0, 1}d plus
a planted point x, which is say distance d/3 from our query. If d = Ω(log n), the
random points will all have distance d/2 + Õ(

√
d) to the query, so there is a factor 1.5

gap. This is enough to achieve polynomial space and sublinear query time.
In practical datasets most points tend to be similarly uncorrelated with the queries,

and the approximate versions is thus sufficient to recover the ‘exact’ most similar
points. The assumption even carries over to a wide range of widely different down
stream applications, such as cryptanalysis [114] and training neural networks [172].

Approximate Similarity Search has been particularly successful because of the class
of algorithms known as Locality Sensitive Hashing, which we describe in the next
section.

1.4 Locality Sensitive Hashing

One intuition for how the “Curse of Dimensionality” appears is the following simple
algorithm, which works well for Nearest Neighbour on Rd in small dimensions: Make
a grid over Rd and store every point in their grid cell. When making a query, the
nearest neighbour is bound to fall either in the same cell, or one of the surrounding
cells. In two dimensions there are just 8 neighbours, in 3 dimensions there are 26,
but in general there are 3d − 1. When is logarithmic in the number of points stored,
d = Ω(log n), the algorithm is no longer faster than comparing the query to the entire
dataset. See fig. 1.2.

Locality Sensitive Hashing uses a similar idea, but instead of a fixed grid, it uses
multiple random grids (space partitions more generally) and only look in the cell
where the query lands. In the most simple version of LSH, the following definition is
used:

Definition 2 (Locality Sensitive Hashing, LSH). A family of hash functions h : U → [m]
is called (s1, s2, p1, p2)-sensitive (for s1 > s2 and p1 > p2) if for any q, y ∈ U:

1. if S(q, y) ≥ s1, then Pr[h(q) = h(y)] ≥ p1, and

2. if S(q, y) < s2, then Pr[h(q) = h(y)] ≤ p2.

6 Chapter 1. Introduction

Figure 1.2: A simple points in grid data structure. To ensure we have found the nearest
neighbour, we must search all adjacent grid cells.

Given such an h, tailored for our similarity function, S, we can create a hash table in
which similar points are likely to collide. Usually we have to tune h by concatenating
a number of independent values, and boost our probability of recovering a good point
by constructing multiple independent2 tables.

Doing so, given an (s1, s2, p1, p2)-sensitive LSH-family, H, and a subset X ⊆ Rd

of size |X| = n, there exists a solution to the (s1, s2)-Approximate Similarity Search
problem using O(n1+ρ + dn) space and with query time dominated by O(nρ log n)
evaluations of H, 3 , where we can take ρ =

log 1/p1
log 1/p2

.
Below are some examples of commonly studied hash functions.

Bit-sampling Indyk at Motwani originally considered the space U = {0, 1}d under
Hamming distance, corresponding to the similarity function S(x, y) = 1− ‖x− y‖/d
where ‖x − y‖ = ∑i∈[d][xi 6= yi]. They took h(x) = xi where i ∈ [d] was chosen
uniformly at random. Consider x, y ∈ U, then Pr[h(x) = h(y)] = 1− |x− y|/d, since
x and y “collide” under h exactly if the random i falls outside of the |x− y| differing
coordinates. By the above construction we then solve the (s1, s2)-Similarity Search
problem with space O(n1+ρ + dn) and query time Õ(nρ) for ρ =

log s1
log s2

.

MinHash In [48] Andrei Broder introduced a hash-family for Jaccard similar-
ity S(x, y) = |x ∩ y|/|x ∪ y| (where x, y ∈ {0, 1}d are considered as subsets of
[d]). The LSH-family samples a random permutation π : [d] → [d] and let
h(x) = arg mini∈x π(i). Then Pr[h(x) = h(y)] = |x ∩ y|/|x ∪ y| since x and y col-
lide exactly if the smallest (under π) element of x ∪ y is in x ∩ y. Again we to solve
the (s1, s2)-Similarity Search problem with ρ =

log s1
log s2

.

2Two-independence suffices, as has been noted by [62] and others.
3If evaluations of H are slow, it is possible to reduce the number substantially [71] leaving a query

time dominated by Õ(nρ) table lookups.

1.4. Locality Sensitive Hashing 7

SimHash Moses Charikar suggested [50] using the SDP rounding technique of
random hyperplanes to sketch angular similarity, S(x, y) = arccos

(〈x,y〉
‖x‖‖y‖

)
/π. Given

x ∈ Rd he takes h(x) = [〈x, g〉] where g ∼ N (0, 1)d is sampled as standard Gaussian
vector, independent for each h. 4 We again get Pr[h(x) = h(y)] = S(x, y) and ρ =

log s1
log s2

.

Based on these examples, it may seem that finding h such that Pr[h(x) = h(y)] =
S(x, y) is a good idea. A similarity function with such a hash function is known by [58]
as “LSH feasible”. It turns out, however, that this is usually not what we need to get
the best possible data structures. The best LSH data structures for angular similarity
and Jaccard are [21] and this thesis, both of which beet the direct LSH functions above.
For angular similarity [21] gets ρ = 1+cos s1π

1−cos s1π
1−cos s2π
1+cos s2π <<

log s1
log s2

. Using so called Data
Dependent LSH it is possible to do even better when s2 > 1/2.

The first data structure to beat MinHash for Jaccard Similarity was Chosen Path [63].
It used a slightly more general framework than definition 2 introduced by Becker et
al. [43] known as Locality Sensitive Filters. We will use the following definition by
Christiani [61]:

Definition 3 (Locality Sensirtive Filters, LSF). Let X be some universe, let S : X×X → R

be a similarity function, and let F be a probability distribution over {(Q, U) | Q, U ⊆ X}.
We say that F is (s1, s2, p1, p2, pq, pu)-sensitive if for all points x, y ∈ X and (Q, U) sampled
randomly from F the following holds:

1. If S(x, y) ≥ s1 then Pr[x ∈ Q, y ∈ U] ≥ p1.

2. If S(x, y) ≤ s2 then Pr[x ∈ Q, y ∈ U] ≤ p2.

3. Pr[x ∈ Q] ≤ pq and Pr[x ∈ U] ≤ pu.

We refer to (Q, U) as a filter and to Q as the query filter and U as the update filter.

See also fig. 1.3. The corresponding theorem to the LSH algorithm is the following
from [61]:

Theorem 1 (LSF theorem). Suppose we have access to a family of filters that is
(s1, s2, p1, p2, pq, pu)-sensitive. Then we can construct a fully dynamic data structure
that solves the (s1, s2)-similarity search problem with query time dnρq+o(1), update time
dnρu+o(1), and space usage dn + n1+ρu+o(1) where ρq = log(pq/p1)

/
log(pq/p2) and

ρu = log(pu/p1)
/

log(pq/p2).

We must be able to sample, store, and evaluate filters from F in time dno(1).
Locality Sensitive Filters were instrumental in getting optimal space/time trade-offs

in the Locality Sensitive framework [115, 61, 25]. Previous algorithms by Kapralov and
others [103, 125] used the “Multi-probing” framework, in which after searching the
h(x) bucket, additional “nearby” buckets were sampled from some distributed and
searched. With LSF we can use buckets of different sizes for queries and data points.
See fig. 1.3. With this approach it is possible to get c2√ρq + (c2 − 1)

√
ρu ≥

√
2c2 − 1

4Thijs Laarhoven showed in [116] that we can improve ρ by orthogonalizing the hyperplanes.

8 Chapter 1. Introduction

Q

U

Figure 1.3: LSF with smaller space usage than query time. Here Q = {x ∈ Sd−1 :
〈x, g〉 ≥ t1} and U = {x ∈ Sd−1 : 〈x, g〉 ≥ t2} for some Gaussian vector g and
thresholds t1, t2.

for any permitting choice of ρq and ρu. The authors also show that this trade-off is
optimal for any algorithms in the model described.

In this thesis we show that one can also get space/time trade-offs for similarity
search of sets – generalizing and improving previous state of the art algorithms such
as MinHash, Chosen Path and Spherical LSH.

Indyk, Broder, and Charikar all received the 2012 ACM Paris Kanellakis Theory
and Practice Award “for their groundbreaking work on Locality-Sensitive Hashing
that has had great impact in many fields of computer science including computer
vision, databases, information retrieval, machine learning, and signal processing”.

Since then there has been a number of variations and important related problems.
We already mentioned time/space trade-offs with LSH. Becker et al. [43] studied
LSF for “medium dimension” data, d = Θ(log n), and [31] introduced the important
idea of “Data Dependent LSH”. The later let to the break-through of LSH for general
norms [28, 27].

Another direction is the complete or partial derandomization of LSH. We discuss
this problem in the next section.

1.5 Las Vegas Similarity Search

A key issue with the data structures described is that they don’t actually guarantee
finding any near neighbours. To the definition 1 should really read “with probability
at least 1− δ” where δ, and the algorithms mentioned should have a factor log 1/δ

multiplied unto their nρ performance. This is a problem for algorithms that need to
be transparent and predictable. If a fingerprint database returns “no match” we want
to be sure that the suspected criminal is really innocent and not have to wonder if our

1.5. Las Vegas Similarity Search 9

Figure 1.4: The filters on the right guarantee that any two points, sufficiently close,
share some filter. The filters on the left only have this guarantee with some probability.

algorithm just predictably failed. Other examples might be blocking people on twitter,
paternity tests or prison sentence measuring.

A further issue is that the standard analysis of LSH isn’t quite precise about its
guarantees on δ. In [180] it was pointed out that it is often “difficult or even impossible
to obtain a theoretical bound on failure probability, i.e., the probability of a false
negative being produced”.

Because of these issues many authors have studied deterministic and Las Vegas
versions of LSH. While deterministic algorithms are still either exponential in d or
only support relatively large approximation factors [94], Las Vegas algorithms have
been more successful.

Already in 2000 [113] it was suggested that one might take δ small enough to
be able to union bound over every possible query. This implies that, with constant
probability, every query would work without false negatives, rather than having the
probabilistic guarantee on queries individually. Unfortunately this only works in
{0, 1}d, and even when it works, it only shows that it is possible in principle to get a
Las Vegas data structure. It turns out to be NP-hard to actually check that we indeed
have such a data structure [9].

In [148, 32] it was shown how to use combinatoric techniques in addition to
the usual probabilistic arguments to create correlated LSH hash tables, which in
combination would guarantee that a near neighbour would be found in at least one
of the tables. Instead of log 1/δ independent repetitions it was shown that some
polynomial number in n sufficed. This means, for example, that they needed more
repetitions than LSH does to get 0.99 success rate, but fewer than LSH needs for
success rate 1− 2−n.

In in this thesis (originally [11]), we show that it is even possible for a Las Vegas
data structure to match the classically randomized data structures up to a factor
1 + o(1) in ρ. This is done using a general approach, rather than one tailored to a
specific similarity measure, which allows us to match classical LSH on both Hamming
distance and Braun-Blanquet.

10 Chapter 1. Introduction

Figure 1.5: A perfect hash-family maps the large universe into buckets of size k2, such
that for any subset, S, of size k there is a h in the family such that h(S) = |S|. We
use a (k2, k, r)-Turán design on the buckets, which is guaranteed to contain r of the k
buckets. We then take the every combination of points in these buckets as the new
r-sets, here catching 20.

The goal is to make a set a locality sensitive filters, such that any two near points
are guaranteed to share at least one filter. See fig. 1.4 for a visualization.

The first step is to reduce the dimension the roughly (log n)1+ε. This is done
using partitioning ideas from [148, 32] as well as a one-sided-error version of a lemma
in [113]. At the same time the union bound idea of [113], mentioned above, we can
create a filter family that is likely to work, and if d = (log n)1−ε we can even check
this efficiently. The hard part us thus to “cross the logarithmic barrier” and go from
d = (log n)1−ε to d = (log n)1+ε.

For this we apply the derandomization technique of splitters [136]. These can be
viewed as families of partitions of 1, . . . , 2d into pairs of sets (S1, S1), (S2, S2), . . . of size
d, such that for any x, y, there is a pair (Sl, Sl) for which ‖xSl − ySl‖ = ‖xSl

− ySl
‖ ± 1.

These families can be taken sufficiently small as to be negligible.
For Braun-Blanquet a particular issue is handling the cases where the dimension

(universe size) is large, but the set sizes are small. For this we use the idea of a
Turán design [178] named after Paul Turán used in his work on hyper graphs. A
(n, k, r)-Turán design, T is a family of size r sets, such that any size k subset S ⊆ [n],
there is R ∈ T such that R ⊆ S. The splitter techniques suffices to create these of
shape roughly (kO(1), k, log n) with size near the expectation for random constructions.
To get n rather than kO(1) we use perfect hashing.

An (n, k2, k)-perfect hash family, H, is a family of functions h : [n]→ [k2] such that
for any size k subset S ⊆ [n], there is h ∈ H such that |h(S)| = |S|. Noga Alon showed
in [16] how to deterministically construct such a family of just k4 log n functions. In
fig. 1.5 we give some intuition for how this perfect hashing is used to increase the size
of Turán designs.

Recently Wei [185] showed how to extend the idea of splitters to the sphere
Sd−1 using Count Sketches.5 Wei also shows how to connect Las Vegas LSH with

5It turns out that splitters work on the sphere as well, given we first randomly rotate the data so all
coordinates are small. However the Count Sketch approach is much more elegant.

1.6. Output Sensitive Similarity Search 11

s2

s1

Figure 1.6: An example from [154] of an LSH bottleneck. Compare this to fig. 1.1. The
large points in the s1 circle are likely to collide with the query in many LSH buckets,
thus when trying to return the k nearest (distinct) neighbours, we end up spending
much time on deduplication.

Data Dependent LSH getting data structures with no false negatives matching the
performance of [25].

1.6 Output Sensitive Similarity Search

In many applications of Similarity Search it is necessary to return more than one
similar point. Natural examples are recommendation systems, which should give
more than one recommendation, and k-nearest neighbour classifiers, which work by
labeling a query as the median of the k most similar labeled examples.

While it is possible for traditional LSH to return more than one similar point, it
can suffer a large (factor k) penalty when doing so. This is because a single very near
neighbour is likely to show up in nearly all of the nρ hash tables. See fig. 1.6 for an
example.

In [154] a strategy was suggested to detect when many duplicates were happening
so one might switch to brute force search, getting a query time of min(n, knρ). Making
LSH actually output sensitive, that is getting the query time from knρ to k + nρ, is an
important practical problem.

In this thesis we suggest a strategy for parameter free search, which is able to use
different LSH parameters depending on the number of points close to the query. This
has the added benefit of saving the user a difficult tuning step when creating the
data structure, which in any case would only be optimal in average, rather than for
the query only known later. Our first algorithm has expected query time bounded
by O(k(n/k)ρ), where k is the number of points to report and ρ ∈ (0, 1) depends on
the data distribution and the strength of the LSH family used. We finally present a
parameter-free way of using multi-probing, for LSH families that support it, and show

12 Chapter 1. Introduction

that for many such families this approach allows us to get expected query time close
to O(nρ + t), which is the best we can hope to achieve using LSH.

Another approach follows from using a separate data structure for density esti-
mation, such as [92] or [189]. This has a certain log overhead however, which can be
significant for very fast queries.

1.7 Hardness of Similarity Search through Orthogonal Vectors

Lower bounds for LSH like algorithms have traditionally been given either in the very
general cell-probe model [152] or the very specific model of boolean functions [132].
One is nice because the bounds hold unconditionally, while the second is nice because
we can show tight upper and lower bounds.

In recent years a third way has become popular for showing lower bounds in all of
theoretical computer science, that is by reduction to the Orthogonal Vectors Conjecture
(or the Strong Exponential Time Hypothesis). The list of “OVC-Hard” problems is
long, including central problems in pattern matching and bioinformatics [4, 39], data
structures [3] and too many more areas to list here.

It is exciting whether we can show lower bounds for Similarity Search matching
our upper bounds. One immediate issue is that Valiant showed 1 + ε approximate
nearest neighbours can be solved as a batch problem in n2−Ω(

√
ε) time for small ε,

beating the n2−Ω(ε) time we get by repeating our best LSH n times. However it would
be interesting to at least show that polynomial time is required.

In this thesis we show that this is indeed the case for the similarity measure of
Inner Product. We show that for c = exp(

√
log n/ log log n) the (s1, cs1)-similarity

search problems requires query time at least n1−δ for any δ > 0, assuming we want
polynomial space.

Previously the only hardness of approximation results known under OVC were
problem specific things like distinguishing whether the diameter of a graph on O(n)
edges is 2 or at least 3 in truly-sub-quadratic time refutes SETH[163], which implies
hardness for (3/2− ε) approximations. In 2017 a major break through was accom-
plished by [1] who showed a beautiful reduction using probabilistically checkable
proofs and hardness for c = exp((log n)o(1)). Later authors used this “Distributed PCP”
to show hardness for Hamming distance [164] and other similarity problems [55].

1.8 Tensor Sketching

The algorithms we have described so far are useful for the problem they are made for:
Similarity Search. Often, however, we don’t have an algorithm for the exact similarity
measure we are interested in, and we need to do some preprocessing to fit it into our
algorithms.

In the first section we mentioned the embedding of text into {0, 1}d. Now a larger
inner product meant a large overlap of words. But what if our documents are long
and contain nearly all of the words, then we don’t get much information from that. An
alternative can then be to look all pairs of words, that is mapping into {0, 1}d2

, or even

1.8. Tensor Sketching 13

Tensor

x⊗k ∈ Rdk

x ∈ Rd x ∈ Rm

Shortcut

JL

Figure 1.7: Tensor Sketch allows sketching x⊗k in time and space nearly the same as
sketching x.

triples or quadruples. This is called tensoring in the machine learning community.
Tensoring works fine with the data structures as described above, however the size
of the new space, dk for some k, may be unmanageable. It is thus natural to want
to reduce the dimension, using such ubiquitous tools as the Johnson Lindenstrauss
transformation [102, 118], which preserves the inner products while yielding much
smaller vectors. Figure 1.7 shows how Tensor Sketching can provide a convenient
shortcut for the operations of tensoring, then dimensionality reducing.

The idea of Tensor Sketching goes back to Pagh and Pham [155, 147]. They showed
that given two independent count sketches 6 Cx, C′x ∈ Rk of a vector x ∈ Rd, then
F−1(FCx ◦ FC′x), where F is the Fourier transform and (◦) is the element-wise
product, would be a count sketch of x⊗ x. This allows computations of count sketches
of x⊗k in time roughly kd log d + k log k. However, if all we want is an embedding
mimicking the tensor product, there are however also other possibilities, such as
Fourier features [119, 157] and hyperplane rounding [52].

Tensor Sketches can do more than just embedding for similarity search however.
Woodruff et al. showed in [37] that the Tensor Sketch by Pagh and Pham is in fact an
Oblivious Subspace Embedding. That is, let M be the Tensor Sketch matrix mentioned,
such that Mx⊗2 = F−1(FCx ◦ FC′x), then for any y ∈ Rd2

we have ‖My‖ = (1±
ε)‖y‖. In [188] Woodruff gives a large number of application of such embeddings,
including state of the art algorithms for `p-regression, low rank approximation, and
principal component analysis (PCA) under polynomial kernels.

Since C is a simple dimensionality reduction matrix, and F is a random rotation,
but might consider the sketch Mx ◦M′x where M and M′ are fully random Gaussian
matrices in Rd×k. We show that this only requires dimension ε−2 log 1/δ + ε(log 1/δ)2.

This sketch takes time dk to calculate however, while the Tensor Sketch by Pagh
and Pham only took roughly k + d log d. We show that Fast Johnson Lindenstrauss ala
Ailon and Chazelle [13] is a Tensor sketch as well and give the tightest known number
of rows needed, though the exact number it requires is still unknown.

In another recent paper Kapralov et al. [105] show similar results. It is however
still an open problem how many rows a (fast) Tensor Sketch needs. The only known
lower bound is that [118] of the actual Johnson Lindenstrauss transformation.

6A count sketch matrix [50] C ∈ Rk×d is defined as follows: Given a two-independent hash function
h : [d]→ [k], and a four-independent hash function s : [d]→ {0, 1}, we let Ci,j = [h(j) = i]s(j).

Chapter 2

Small Sets Need Supermajorities: Towards Optimal
Hashing-based Set Similarity

2.1 Introduction

Sparse boolean vectors arises from the classical representation of documents as “bags
of words”, where non-zero vector entries correspond to occurrences of words (or
shingles). Another example is one-hot encoding of categorical data, such as which
movies a user has watched.

Data structures for such data has been constructed for queries such as Superset /
Subset / Containment, Partial Match, Jaccard similarity and maximum inner product
search (MIPS). Early work goes back to Ronald Rivest’s thesis [162] and many later
papers have tackled the issue [51, 69]. Unfortunately these problems are equivalent to
the Orthogonal Vectors problem [56], which means that we can’t do much better than
a brute force search through the database.

Hence recent research has focused on approximate versions of the problem, with
MinHash (a.k.a. min-wise hashing) by Broder et al.[48, 47] being a landmark result.
These problems are usually defined over some “simmilarity measure” like Jaccard
similarity or Inner Product, with Chosen Path for Braun Blanquet similarity [63] being
a recent break through. It has been observed however, that knowing the size of the
sets in the database and queries make all of these equivalent [63], including more than
76 binary similarity (and distance) measures defined in the survey [60]. This method,
sometimes known as “norm ranging” is also practical, giving state of the art results at
NeurIPS 2018 [192].

We thus define the Gap Similarity Search problem, as the approximate set similarity
search problem that is aware of the set weights. Recall the definition from the abstract:
The (wq, wu, w1, w2)-GapSS problem is to, pre-process n sets Y ⊆ (U

wu|U|) such that
given a query q ∈ (U

wq|U|) we can efficiently return y′ ∈ Y with |y′ ∩ q| > w2|U| or
determine that there is no y ∈ Y with |y ∩ q| ≥ w1|U|. Here U is some universe set,
which we can assume to be larger than ω(log n) by duplication if necessary.

Note that GapSS includes approximate subset/superset queries by setting w1 = wu
or w1 = wq. The classical setting of a planted similar point on a background of random
data [162], is included with w2 = wqwu.

16 Chapter 2. Small Sets Need Supermajorities: Towards Optimal Hashing-based Set Similarity

MinHash, Chosen Path and the extremely studied Spherical LSH [25] all solve the
GapSS problem, with different algorithms being more efficient for different ranges of
parameters. While the sketching problem for sets have been studied extensively, with
faster MinHash algorithms such as [71], the search problem is less well understood.
In [63] it was left as an open problem to unify the above methods, ideally finding the
optimal LSH algorithm for set data. That is the problem we tackle in this paper.

Approach The proposed data-structure is a simple “list-of-points” data structure:
We sample m sets Si ⊆ U independently and with replacement. We define

F(i)
q (q) =

{
[|q ∩ Si| ≥ tq|Si|] if tq ≥ wq,
[|q ∩ Si| ≤ tq|Si|] if tq < wq,

and F(i)
u (y) =

{
[|y ∩ Si| ≥ tu|Si|] if tu ≥ wu,
[|y ∩ Si| ≤ tu|Si|] if tu < wu,

(2.1)

and store each y from the database in lists indexed each i ∈ [m] such that F(i)
u (y) = 1.

When performing a query, q, we search each list indexed by i such that F(i)
q (q) = 1 and

compare q to each of the ys in those lists, returning the first with 〈q, y〉 ≥ w2. Since tu
(resp. tq) is usually greater than the expectation of |y ∩ Si|/|Si| (wu, resp. wq) we call
these boolean functions supermajorities, taken from social choice theory - “a qualified
majority must vote in favour”. 1

While the above algorithm is a simple enough to be described in (roughly) a
paragraph, the resulting bounds are complicated, and it is not obvious at first that they
would be optimal. Perhaps this is why the scheme hasn’t (to our knowledge) been
described earlier in the literature. We do however show a number of lower bounds
proving that given the right choices of tu and tq the scheme is indeed optimal over
all choices of functions Fu and Fq for a large range of parameters wq, wu, w1 and w2.
We conjecture that it is optimal over the entire space. For this reason the relative
complication is inherent, and researchers as well as practitioners should not shy away
from using supermajorities more widely.

A limitation of our result is the assumption that wx and wy be constants ∈ [0, 1]. It
is common in the literature [71, 63] to assume that the similarities (s1, s2) (e.g. Jaccard)
are constants, but usually arbitrarily smalls sets are allowed. We believe this is mainly
an artefact of the analysis, and something it would be interesting future work to get
rid of. In the meantime it also means that we can always hash down to a universe size
of ≈ w−1

2 log n, which removes the need for a factor |U| in the query time.
Intuitively our approach is similar to the Chosen Path algorithm, which fits in the

above framework by taking F(i)
q (q) = [Si ⊆ q] and F(i)

u (y) = [Si ⊆ y]. If |q| is not equal
to |u| however (lets say wq > wu), the queries will have to look in many more lists
than each data point is stored in, which gives a non-balanced space/time trade-off.
Chosen Path handles this by a certain symmetrization technique (which we will study
later), but perhaps the most natural approach is simply to slack the requirement of Fu,
including also some lists where Si is not completely contained in y.

1The Chosen Path filters of [63] are similar, but use the ‘Consensus’ function or ‘ALL-function’ for
both Fu and Fq. The spherical LSF in [25] uses linear threshold functions, but for boolean data it can
also use simple majorities (or 1 + o(1) fraction majorities.)

2.1. Introduction 17

In our results we include a comprehensive comparison to a number of other LSH
based approaches, which in addition to unifying the space of algorithms also give
a lot more intuition for why supermajorities are the right space partition for sparse
boolean data.

2.1.1 Related Work

Work on Set Similarity Search has focused on a number of seemingly disparate prob-
lems: (1) Super-/Subset queries (2) Partial Match, (3) Jaccard/Braun Blanquet/Cosine
similarity queries, and (4) maximum inner product search (MIPS).

The problems all have all traditionally been studied in their exact form:

Super-/Subset queries Pre-process a database D of n points in {0, 1}d such that, for
all query of the form q ∈ {0, 1}d, either report a point x ∈ D such that x ⊆ q
(rasp. q ⊆ x) or report that no such x exists.

Partial Match Pre-process a database D of n points in {0, 1}d such that, for all query of
the form q ∈ {0, 1, ∗}d, either report a point x ∈ D matching all non-∗ characters
in q or report that no such x exists.

Similarity Search Given a similarity measure S : {0, 1}d × {0, 1}d → [0, 1], pre-
process a database D of n points in {0, 1}d such that, for all query of the form
q ∈ {0, 1}d return the point x ∈ D maximizing S(q, x).

Maximum Inner Product Search Same as Similarity Search, but S(x, y) = 〈x, y〉.

These problems are all part of an equivalence class of hard problems, known as
Orthogonal Vectors [56]. This means that we don’t expect the existence of polynomial
space data structures that can solve either of these problems faster than a linear scan
through the entire database. See also [12, 1, 164].

For this reason people have studied approximate versions of each problem. While
the exact definition of the approximation differs in the literature, once we fix the
weight of the input vectors, they all become essentially equal to GapSS as defined in
this paper. This allows us to compare the best algorithms from each category against
each other, as well as against our suggested Supermajorities algorithm. It should be
noted that the hardness results mentioned above also holds for approximate variations,
so the gap will have to be sufficiently large for any approach to work.

Partial Match The problem is equivalent to the subset query problem by the follow-
ing well known reductions: (PM→ SQ) Replace each x ∈ D by the set {(i, pi) : i ∈ [d]}.
The replace each query q by {(i, qi) : qi = ∗}. (SQ→ PM) Keep the sets in the database
as vectors and replace in each query each 0 by an ∗.

The classic approach, studied by Rivest [162], is to split up database strings like
supermajority and file them under s, u, p etc. Then when given query like set we take
the intersection of the lists s, e and t. Sometimes this can be done faster than brute
force searching each list. He also considered the space heavy solution of storing all
subsets, and showed that that when d ≤ 2 log n, the trivial space bound of 2d can be
somewhat improved. Rivest finally studied approaches based on tries and in particular

18 Chapter 2. Small Sets Need Supermajorities: Towards Optimal Hashing-based Set Similarity

the case where most of the database was random strings. The later case is in some
ways similar to the LSH based methods we will describe below.

Indyk, Charikar and Panigrahi [51] also studied the exact version of the problem,
and gave algorithms with

1. n2(O(d log2 d
√

c/ log n) space and O(n/2c) time.

2. ndc space and O(dn/c) query time.

for any c ∈ [n]. Their approach was a mix between the shingling method of Rivest,
building a look-up table of size ≈ 2Ω(d), and a brute force search. These bounds
manage to be non-trivial for d = ω(log n), however only slightly, since otherwise they
would break the mentioned OVC lower bounds.

There has also been a large number of practical papers written about Partial
Match / Subset queries or the equivalent batch problem of subset joins. [159, 129,
85, 8, 160] Most of these use similar methods to the above, but save time and space
in various places by using bloom filters and sketches such as MinHash [48] and
HyperLogLog [81].

Maximum Inner Product For exact algorithms, most work has been done in the
batch version (n data points, n queries). Here Alman et al. [14] gave an n2−1/Õ(

√
k)

algorithm, when d = k log n.
An approximative version can be defined as: Given c > 1, pre-process a database

D of n points in {0, 1}d such that, for all query of the form q ∈ {0, 1}d return a point
x ∈ D such that 〈q, x〉 ≥ 1

c maxx′∈D〈q, x′〉. Here [12] gives a data-structure with query
time ≈ Õ(n/c2), and [56] solves the batch problem in time n2−1/O(log c). (Both when d
is no(1).)

There are a large number of practical papers on this problem as well. Many
are based on the Locality Sensitive Hashing framework (discussed below) and have
names such as SIMPLE-LSH [138] and L2-ALSH [166]. The main problem for these
algorithms is usually that no hash family of functions h : {0, 1}d × {0, 1}d → [m] such
that Pr[h(q) = h(x)] = 〈q, x〉/d [12] and various embeddings and asymmetries are
suggested as solutions.

The state of the art is a paper from NeurIPS 2018 [192] which suggests partitioning
data by the vector norm, such that the inner product can be more easily estimated
by LSH-able similarities such as Jaccard. This is curiously very similar to what we
suggest in this paper.

We will not discuss these approaches further since, for GapSS, they are all domi-
nated by the three LSH approaches we study next.

Similarity Search The problem is usually studied as an approximate problem: Given
a similarity measure S : {0, 1}d × {0, 1}d → [0, 1] and s1 > s2 ∈ [0, 1], pre-process a
database D of n points in {0, 1}d such that for queries q ∈ {0, 1}d we return a point
x ∈ D with S(q, x) ≥ s2 given there is x′ ∈ D with S(q, x′) ≥ s1.

This naturally generalizes MIPS as defined above. The formulation allows use
application of Indyk and Motwani’s LSH framework [95]. Here we define a family, H,
of functions h : {0, 1}d × {0, 1}d → [m] such that

2.1. Introduction 19

1. Prh∼H[h(q) = h(x)] ≥ p1 when S(q, x) ≥ s1, and

2. Prh∼H[h(q) = h(x)] < p2 when S(q, x) < s2.

The constructions in [95, 88] then give an algorithm for the approximate similarity
search problem with space n1+ρ + dn and query time dominated by nρ evaluations of
h, where ρ = log p1/ log p2.

If H exists such that Prh∼H[h(q) = h(x)] = S(q, x) is achievable (see [59] for a
study of when this is the case) then such a family is an obvious choice. An example of
this is Broder’s MinHash algorithm, which has Prh∼H[h(q) = h(x)] = |q ∩ x|/|q ∪ x|
where S(q, x) = |q ∩ x|/|q ∪ x| is the Jaccard similarity.

Choosing H like this is however not always optimal, as Christiani and Pagh [63]
shows by constructing a data structure with ρ =

log 2s1/(1+s1)
log 2s2/(1+s2)

<
log s1
log s2

when the size
of sets is equal, |q| = |x|. Their approach, known as Chosen Path, is similar to the
one presented in this paper, in that it uses the generalized LSH framework known has
Locality Sensitive Filters, LSF [43]. In general they get ρ =

log b1
log b2

where b1 > b2 ∈ [0, 1]
are Blanquet Similarities B(q, x) = |q ∩ x|/ max{|q|, |x|}.

The most studied variant is LSH on the sphere. Here, given α > β ∈ [−1, 1], we
pre-process a database D of n points in Sd−1 and for a query q ∈ Sd−1 return x′ ∈ D
with 〈q, x′〉 ≥ β given the promise that there is x ∈ D with 〈q, x〉 ≥ α. In [21] they
show how to get ρsp = 1−α

1+α
1+β
1−β .2

While it is clear that both MinHash and Chosen Path can solve GapSS when wq and
wu is known in advance, using spherical LSH requires that we embed the binary vectors
onto the sphere. Multiple ways come to mind, such as mapping 0 7→ −1/

√
d, 1 7→

1/
√

d or 0 7→ 0, 1 7→ 1/
√

wqd (for queries, resp. 1/
√

wud for data points). Depending
on how we do it, the algorithm of [21] will naturally return different results, however
given knowledge of wq and wu there is an optimal embedding3, as we will show in this
paper. This gives α =

w1−wqwu√
wq(1−wq)wu(1−wu)

and β =
w1−wqwu√

wq(1−wq)wu(1−wu)
which is better

than the two previous methods when wq and wu are not too small.
Two other classic methods are Bit Sampling [95] and SimHash (Hyperplane round-

ing) [52], which give ρbs =
log(1−wq−wu+2w1)

log(1−wq−wu+2w2)
and ρhp =

log(1−arccos(α)/π)
log(1−arccos(β)/π)

respectively.
(SimHash also works on the sphere, but has the same optimal embedding as spherical
LSH.) These ρ-values however turn out to always be larger than ρsp, so we won’t study
them as much.

While Chosen Path and Spherical LSH both have proofs of optimality [63, 26, 145,
133] in the LSH model, these optimality proofs consider specific ranges, like when
wq, wu or w1 goes to zero. Hence they are not necessarily optimal when used in all
the ranges of parameters in which GapSS is interesting. In fact they each have regions
of optimality, as was observed in [63] who proposed as an open problem to find an
LSF scheme that unified all of the above. This is what we do in this paper, as well as
showing matching lower bounds in a wider range of parameters.

2For β→ 1 this approaches log α/ log β, which would be like an LSH-able family for inner product
on the sphere, but unfortunately this is not achievable with LSH. For the batch problem it was shown
possible in [107].

3optimal for embeddings on the form 0 7→ a, 1 7→ b.

20 Chapter 2. Small Sets Need Supermajorities: Towards Optimal Hashing-based Set Similarity

Trade-offs and Data Dependency The above algorithms, based on the LSH frame-
work, all had space usage roughly n1+ρ and query time nρ for the same constant ρ.
This is known as the “balanced regime” or the “LSH regime”. Time/space trade-offs
are important, since n1+ρ can sometimes be too much space, even for relatively small ρ.
Early work on this was done by Panigrahy [151] and Kapralov [104] who gave smooth
trade-offs ranging from space n1+o(1) to query time no(1). A breakthrough was the use
of LSF, which allowed time/space trade-offs with sublinear query time even for near
linear space and small approximation [115, 61, 26].

Prior to this article, the only way to achieve trade-offs for set data was to embed it
into the above spherical algorithms. In this paper we show that it is often possible to
do much better, and in some cases get query time less than that of balanced spherical
LSH, even with near-linear space.

Arguably the largest break-through in LSH based data-structures was the intro-
duction of data-dependent LSH[22, 31, 29]. It was shown how to reduce the general
case of α, β similarity search as described above, to the case β = 0 (and α 7→ α−β

1−β), in
which many LSH schemes work better. Using those data structures on GapSS with
w2 > wqwu will yield often yield better performance than the algorithms described in
this paper. However, since the data-dependent methods are equivalent to Spherical
LSH for w2 = wxwy, we always dominate this case, and it is an exciting open problem
to create similar reductions directly for set data, possibly using the space partitioning
proposed in this algorithm as a building block.

2.1.2 Results

We split our results in upper bounds, lower bounds and comparisons with other
approaches. Regrettably some of our results have to be stated rather indirectly. We
provide fig. 2.1 to guide the intuition, as well as some corollaries with results for
specific parameters.

Upper bounds

We show the existence of a data-structure for (wq, wu, w1, w2)-GapSS with space us-
age n1+ρu+o(1) + O(n wu|U|) and query time nρq+o(1) for some ρq and ρu which are
functions of wq, wu, w1, w2 as well as tu, tq ∈ [0, 1] as described in the introduction.

Our main upper bound, theorem 5, is a bit to intricate to be stated yet, but we note
the following corollaries. Each of them follows easily by inserting the giving values
into theorem 5.

Corollary 1 (Near balanced). If we set tq = 1− wu, t2 = u− wq we get the near-balanced
values:

ρq =
H(w1)− D(wu, 1− wq)

H(w2)− D(wu, 1− wq)
, ρu =

H(w1)− D(wq, 1− wu)

H(w2)− D(wu, 1− wq)
. (2.2)

where H(wi) = (1− wq − wu) log(1−wq−wu+wi
wi

), and D(a, b) = a log a
b + (1− a) log 1−a

1−b
is the Kullback–Leibler divergence. (We define D(0, b) = log 1/(1− b), D(1, b) = log 1/b
as is standard.)

2.1. Introduction 21

0.0 0.2 0.4 0.6
ρq

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ρ
u

MinHash
Corollary 1

Chosen Path

Hyperplane

Spherical Trade-off
LSH Regime
General Upper Bound
Lower bound 1
Lower bound 2 (Conj.)

(a) Superset queries with wq = 0.1, wu = 0.3,
w1 = 0.1 and w2 = wqwu. As the sets are
relatively large, Spherical LSH beats MinHash
and Chosen Path.

0.0 0.2 0.4 0.6
ρq

0.0

0.5

1.0

1.5

2.0

ρ
u

MinHash
Corollary 1 Chosen Path

Hyperplane

Spherical Trade-off
LSH Regime
General Upper Bound
Lower bound 1
Lower bound 2 (Conj.)

(b) Superset queries at smaller scale with wq =
0.01, wu = 0.03, w1 = 0.01 and w2 = wqwu.

0.2 0.3 0.4 0.5 0.6
ρq

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ρ
u

MinHash

Corollary 1

Spherical Trade-off
LSH Regime
General Upper Bound
Lower bound 1
Lower bound 2 (Conj.)

(c) wq = 0.4, wu = 0.1 w1 = 0.1 w2 = wqwu.
We see that theorem 2 is not tight when wq 6=
wu. However the conjectured Lower bound 2
matches the upper bound exactly.

0.15 0.20 0.25 0.30 0.35 0.40
ρq

0.1

0.2

0.3

0.4

0.5

0.6

ρ
u

MinHash

Corollary 1
Chosen Path

Spherical Trade-off
LSH Regime
General Upper Bound
Lower bound 1
Lower bound 2 (Conj.)

(d) wq = wu = 0.16, w1 = 0.1, w2 = wqwu. The
red dots show the segment where the r, s can
be chosen optimally without exceeding 1/2.

Figure 2.1: Examples of ρ-values obtained from theorem 5 for various parameter
settings, compared to that of other algorithms, and to the lower bounds theorem 2
and conjecture 1.

22 Chapter 2. Small Sets Need Supermajorities: Towards Optimal Hashing-based Set Similarity

If wq = wu = w this simplifies to:

ρq = ρu = log
(

w
w1

1− 2w + w1

1− w

)/
log
(

w
w2

1− 2w + w2

1− w

)
=

log S(q, x)
log S(q, x′)

, (2.3)

where S(q, x) = 〈q,x〉
‖q‖2‖x‖2

/ 〈q̄,x̄〉
‖q̄‖2‖x̄‖2

is the cosine similarity divided by the cosine similar-
ity on the complement sets.

In the case of small sets, w, w1, w2 → 0, equation (2.3) reduces to log(w
w1
)
/

log(w
w2
),

which is the ρ-value of Chosen Path, and was shown in [63] to be optimal in this range.
In the next section we generalize their lower bound to hold generally for all values
w, w1, w2 though still only asymptotically sharp for small sets.

Corollary 1 is special, because the optimal values of tu and tq depend only on
wu and wq, while in general it will also depend on w1 and w2. We will show (2.3)
is optimal for the case w2 = w2

q for all choices of wq and w1. Conditioned on a
conjectured hypercontractive inequality we will even show eq. (2.2) is optimal for all
choices of wq, wu and w1 at the particular trade-off.

Corollary 2 (Subset/superset queries). If w1 = min{wu, wq}, w2 = wuwq we can take

tq = −
wu(1− wu)wq(1− wq)

wq − wu
α +

wq(1− wu)

wq − wu

and tu =
1

wq − wu
α−1 −

wu(1− wq)

wq − wu

for any α ∈
[
min{wu, wq} − wqwu, max{wu, wq} − wqwu

]
to get data structures with

ρu =
tq log 1−tu

1−wu
− tu log 1−tq

1−wq

D(tu, wu)
and ρu =

(1− tu) log tq
wq
− (1− tq) log tu

wu

D(tu, wu)
.

As it turns out, the optimal values for tu and tq, when doing superset/subset
queries lie on the diagonal hyperbola tuwq(1− wu)− tq(1− wq)wu = tutq(wq − wu)
with tu, tq = 0 in one end and tq, tu = 1 in the other. This means that Chosen Path
(without symmetrization) is indeed equivalent to our approach for these problems,
when we are interested in near linear space or near constant query time.

Lower bounds

For the lower bounds we will assume |U| = ω(log n) (like we reduce to in the
upper bounds). This follows all previous LSH-lower bounds, and indeed it is known
from [43] that it is possible to do better in the “medium dimension regime” when
|U| = O(log n). In that regime classical data structures such as KD-trees are also
competitive, see e.g. [49].

The lower bounds are all in the specific model of Locality Sensitive Filters (def-
inition 4). In other words, the data structure is presumed to be as described in the
introduction, and the only part we are allowed to change is how the F functions
from equation (2.1) are defined. There is a stronger kind of LSH, in which the fil-
ter distribution is allowed to depend on the dataset [22, 31, 25] which does better

2.1. Introduction 23

than data-independent LSF in general. However most of our lower bounds are for
the ‘random case’ w2 = wqwu in which no difference is known between the two
approaches.

About the notation in the lower bounds: When we write “ρq ≥ A and ρu ≥ B” it
will mean that it is not possible to make one smaller while not increasing the other.
Since there is always ρq = 0 and ρu = 0 somewhere on the trade-off, it doesn’t make
sense to bound one value in isolation.

Theorem 2 (Lower bound 1). Given α ≥ 0 and 0 ≤ r, s ≤ 1/2, let uq = log 1−wq
wq

and

uu = log 1−wu
wu

. If r and s are such that sinh(uqr)
sinh(uq(1−r))

sinh(uus)
sinh(uu(1−s)) =

(
w1−wqwu

wq(1−wq)wu(1−wu)

)2
,

then any LSF data structure must have

ρq ≥ 1− s− αr and ρu ≥ α− s− αr.

To get the most out of the lower bound, we will also want r and s such that

uq sinh(uq) sinh(uus) sinh(uu(1− s))
uu sinh(uu) sinh(uqr) sinh(uq(1− r))

= α,

however due to the limitation r, s ≤ 1/2, this is not always possible.4

For wu = wq we can take α = 1 and r = s to get ρq, ρu ≥ log wq
w1

1−2wq+w1
1−wq

/
log 1−wq

wq

which exactly matches corollary 1 and shows it is optimal for all w1 and wq when
wu = wq, w2 = w2

q. When wq 6= wu the bound is unfortunately not sharp, as can be
seen in fig. 2.1.

Theorem 2 is based on the p-biased hypercontractive inequalities of Oleszkiewicz
and Krzysztof [143]. Their inequality, while sharp, only handles the case of a single
boolean function, and we have expanded it using Cauchy Schwartz to get our more
general theorem. This approach, while good enough for sharp space/time trade-offs
on the sphere, turns out to be insufficient for sets when wq 6= wu.

To overcome this, we conjecture a new two-function p-biased hypercontractive
inequality, which we unfortunately have not able to prove yet, but for which we have
much evidence (see the lower bounds section). This inequality implies the following
lower bound:

Conjecture 1 (Lower bound 2). Let r = log (1−wq)(1−wu)
wqwu

/
log 1−wq−wu+w

w and α ≥ 0 then
any LSF data structure must have

ρq ≥ (α + 1)/r− α and ρu ≥ (α + 1)/r− 1.

Setting α = 1 this immediately corollary 1 is tight for all wq, wu, w1 and w2 = wqwu.
We believe it should be possible to extend this further to separate r and s values, as
in theorem 2, which would show theorem 5 to be tight for all wq, wu, w1 and the entire
time/space trade-offs, but this is work for the future.

Our previous lower bounds have assumed w2 = wqwu. To extend to general values
of w2 we show the follow bound:

4This is not just an artefact of the proof, since computations of theorem 2 with r, s outside the given
range shows that the theorem as stated is indeed false in that case, as it goes above our upper bound.
The limitation might be removed by using the more general p-biased inequalities by Wolff [187], but
unfortunately those are for assymptotically small sets.

24 Chapter 2. Small Sets Need Supermajorities: Towards Optimal Hashing-based Set Similarity

Theorem 3 (Lower bound 3). If wq = wu, any LSF data structure that uses the same

functions for updates and queries (F(i)
u = F(i)

q) must have then any LSF data structure must
have

ρu, ρq ≥ log

(
w1 − w2

q

wq(1− wq)

)/
log

(
w2 − w2

q

wq(1− wq)

)
.

Taking w, w1, w2 → 0 this recovers Pagh and Christiani’s ρ ≥
log(w1/w)

/
log(w2/w) bound for Braun Blanquet similarity [63].5 For larger

values of wq, w1, w2 the bound is however not tight. Showing any lower bound that
holds for w2 6= wuwq and for large distances is an open problem in the LSH world.

Comparison to previous approaches

Since our lower bounds don’t cover the entire range of parameters wq, wu, w1, w2 (no
LSH lower bounds do), we need to compare our ρ values with those achieved by
previous methods and show that we get lower values on the entire range.

We show two results towards this: (1) For Spherical LSH we show how to most
optimally embed GapSS onto the sphere, and that our ρ values are at least as small
as with Spherical LSH in this setting. (2) For MinHash we show dominating family
of Chosen Path like algorithms, which it is natural to conjecture is again dominated
by supermajorities. The first result is quite interesting on its own right, since many
previous algorithms for Maximum Inner Product Search as consisted of various
embeddings onto the sphere. The second result is also interesting in that it sheds more
light on why MinHash is sometimes faster than Chosen Path, which is a question
raised in [63], and shows that small changes to Chosen Path could indeed change this.

Lemma 2.1.1 (Best Binary Embedding). Let g, h : {0, 1}d → R be function on the form
g(1) = a1x + b1 and h(y) = a2y + b2. Let ρ(x, y, y′) = f (α(x, y))/ f (α(x, y′)) where
α(x, y) = 〈x, y〉/‖x‖‖y‖ be such that

f (z) ≥ 0, d
dz

(
(±1− z) d

dz log f (z)
)
≥ 0 and d3

dz3 log f (z) ≤ 0

for all z ∈ [−1, 1]. Assume we know that ‖x‖2
2 = wqd, ‖y‖2

2 = wud, 〈x, y′〉 = w1d and
〈x, y〉 = w2d, then

arg min
a1,b1,a2,b2

ρ(g(x), h(y), h(y′)) = (1,−wq, 1,−wu).

See proof in section 2.3.2. Since α, as defined above, scales the vectors down by
their norm to make sure they are on the sphere, the lemma indeed says that we should
subtract the mean and divide by the standard deviation of our vectors before we use
LSH. We show that Spherical LSH and Hyperplane LSH [52] (a.k.a. SimHash) satisfy
this lemma, given their ρ values for distinguishing between inner products α > β:

ρhp =
log(1− arccos(α)/π)

log(1− arccos(β)/π)
, ρsp =

1− α

1 + α

1 + β

1− β
.

This implies we should take α =
w1−wqwu√

wq(1−wq)wu(1−wu)
and β =

w2−wqwu√
wq(1−wq)wu(1−wu)

.

See also fig. 2.1 where we have plotted theorem 5 against Chosen Path, MinHash,
Spherical LSF and Hyperplane LSH.

5Their bound also implicitly had the same function for queries and updates.

2.2. Preliminaries 25

Comparison to MinHash Consider the LSF family, F , formed by one of the functions

F0(x) = [s0 ∈ x], F1(x) = [s1 ∈ x ∧ s0 6∈ x], . . . , Fi(x) = [si ∈ x ∧ s0 6∈ x ∧ · · · ∧ si−1 6∈ x], . . .

where (si ∈ U)i∈N is a random sequence by sampling elements of U with replacement.
Note that while the sequence is infinite, it the functions eventually all become 0 as we
get a prefix including all of U, hence we can sample from F efficiently. Also note that
then h(x) = min{i | Fi(x) = 1} is the usual MinHash function.

While MinHash is balanced, ρu = ρq, most of the Fi’s are on their own not balanced
if wq 6= wu. We can fix this by applying a symmetrization technique implicit in [63].
Using that we get

ρi = log
(1− wq − wu + w1)

iw1

max{(1− wq)iwq, (1− wu)iwu}

/
log

(1− wq − wu + w2)
iw2

max{(1− wq)iwq, (1− wu)iwu}

for the LSF data structure using only Fi. Note that ρ0 = log w1
max{wq,wu}

/
log w2

max{wq,wu}
is exactly the same as ρcp achieved by Chosen Path. This makes sense, since it is
exactly the Chosen Path function with the Chosen Path symmetrization technique.

We show that in section 2.3.3 that ρmh = log w1
wq+wu−w1

/
log w2

wq+wu−w2
≥ mini≥0 ρi.

In fact we can restrict this to i ∈ {0, ∞, log(wq/wu)/ log((1− wq)/(1− wu))}, where
the first gives Chosen Path, the second gives Chosen Path on the complemented sets,
and the last gives two concatenated Chosen Path’s in a balanced trade-off where
(1− wq)iwq = (1− wu)iwu.

2.2 Preliminaries

The Locality Sensitive Filter approach to similarity search is an extension by Becker et
al. [43] to the Locality Sensitive Hashing framework by Indyk and Motwani [95]. We
will use the following definition by Christiani [61], which we have slightly extended
to support separate universes for query and data points:

Definition 4 (LSF). Let X and Y be some universes, let S : X × Y → R be a similarity
function, and let F be a probability distribution over {(Q, U) | Q ⊆ X, U ⊆ Y}. We say
that F is (s1, s2, p1, p2, pq, pu)-sensitive if for all points x ∈ X, y ∈ Y and (Q, U) sampled
randomly from F the following holds:

1. If S(x, y) ≥ s1 then Pr[x ∈ Q, y ∈ U] ≥ p1.

2. If S(x, y) ≤ s2 then Pr[x ∈ Q, y ∈ U] ≤ p2.

3. Pr[x ∈ Q] ≤ pq and Pr[x ∈ U] ≤ pu.

We refer to (Q, U) as a filter and to Q as the query filter and U as the update filter.

The main theorem from [61] which we will use for our upper bounds is (paraphras-
ing):

26 Chapter 2. Small Sets Need Supermajorities: Towards Optimal Hashing-based Set Similarity

Theorem 4 (LSF theorem). Suppose we have access to a family of filters that is
(s1, s2, p1, p2, pq, pu)-sensitive. Then we can construct a fully dynamic data structure
that solves the (s1, s2)-similarity search problem with query time dnρq+o(1), update time
dnρu+o(1), and space usage dn + n1+ρu+o(1) where ρq = log(pq/p1)

/
log(pq/p2) and

ρu = log(pu/p1)
/

log(pq/p2).
We must be able to sample, store, and evaluate filters from F in time dno(1).

We will use definition 4 with S(x, y) = |x ∩ y|. For given values of wq and wu,
the (s1, s2)-similarity search problem then corresponds to the (wu, wq, w1, w2)-gap
similarity search problem.

2.3 Upper bounds

To state our results we first need to define the following functions:

Definition 5 (Entropy Functions). The relative entropy function (or Kullback–Leibler
divergence) is defined for a, b ∈ [0, 1] by: D(a, b) = a log a

b + (1 − a) log 1−a
1−b and

D(0, b) = log 1/(1− b), D(1, b) = log 1/b.
For x, y ∈ [0, 1], t1, t2 ∈ [0, 1] and b ∈ [0, min(x, y)] we define the following pair-relative

entropy function:

Λ(wq, wu, w, tq, tu) = t1λ1 + t2λ2 − log v where

λ1 = log
(

v(1− t2)− (1− x− y + b)
x− b

)
, λ2 = log

(
v(1− t1)− (1− x− y + b)

y− b

)
,

v =
v1 +

√
v2

1 − v2

2b(1− t1)(1− t2)
,

and v1 = (1− t1 − t2)(b− xy) + b(1− x− y + b), v2 = 4(1− t1)(1− t2)(b− xy)b(1−
x− y + b). At t1 = 1, t2 = 1 or b = min(x, y) it is defined by its limit.

The goal of this section is to prove the following general upper bound:

Theorem 5 (General Upper Bound). For any choice of constants wq, wu ≥ w1 ≥ w2 ≥ 0
and 1 ≥ tq, tu ≥ 0 we can solve the (wq, wu, w1, w2)-GapSS problem over universe U with
query time nρq+o(1) and space usage nρu+o(1) + O(n wu|U|), where

ρq =
Λ(wq, wu, w1, tq, tu)− D(tq, wq)

Λ(wq, wu, w2, tq, tu)− D(tq, wq)
, ρu =

Λ(wq, wu, w1, tq, tu)− D(tu, wu)

Λ(wq, wu, w2, tq, tu)− D(tq, wq)
.

The theorem defines the entire space/time trade-off of fig. 2.1 by choices of tq and
tu. By Lagrangian multipliers we can compute the optimal tu for any tq. An easy
corollary is

Corollary 3 (Linear space / constant time).

If tq wy(1− wy) + w1wy = tu (w1 − wxwy) + wxwy then ρu = 0.
If tuwx(1− wx) + w1wx = tq(w1 − wxwy) + wywx then ρq = 0.

2.3. Upper bounds 27

We will use the LSF theorem 4 as the basis for our upper bound with the filter family
described in the introduction. Note that we can reduce the universe to O(ε−2w−1

2 log n)
by sampling. By a union bound this preserves w1, w2, wq and wy within a factor 1± ε.
Taking ε = 1/ log n this is absorbed into the no(1) factor in our bounds. If |U| is too
small, we can simply replicate the elements to ensure |U| = ω(log n).

We restate the filter family: The functions are constructed by sampling a random
subset S ⊆ U, |S| = ω(log n) with replacement, and picking two thresholds, 1 ≥ tu ≥
0, 1 ≥ tq ≥ 0. Then

Fu(y) =

{
[|y ∩ S| ≥ tu|S|] if tu ≥ wu

[|y ∩ S| ≤ tu|S|] if tu < wu
and Fq(x) =

{
[|x ∩ S| ≥ tq|S|] if tq ≥ wq

[|x ∩ S| ≤ tq|S|] if tq < wq
.

To use theorem 4 we then need to compute pu = Pr[Fu(y) = 1], pq = Pr[Fq(x) = 1]
and p1 = Pr[Fu(y) = 1 ∧ Fq(x) = 1]. The two first follow from the standard Entropy
Chernoff bound: log pu = −D(tu, wu)|S|(1 + o(1)) and log pq = −D(tq, wq)|S|(1 +
o(1)). where D is from definition 5. Note that this form of the Chernoff bound holds
in the tu ≥ wu case as well as the tu < wu case.

The joined probability p1 (and p2) is more tricky. Note that we need a bound
which is tight up to a factor 1 + o(1) in the exponent. We will do this using the Large
Deviations theorem by Gartner Ellis (see below) on the sequence {Xi}i∈[|S|] ⊆ {0, 1}2

of outcomes when sampling S, where Xi,1 = F(i)
q (x) and Xi,2 = F(i)

u (x). This has

joint Bernoulli distribution ∼
[

w1 wu−w1
wq−w1 1−wq−wu+w1

]
or concretely: Pr[Xi = (1, 1)] = w1,

Pr[Xi = (1, 0)] = wq − w1, Pr[Xi = (0, 1)] = wu − w1 and Pr[Xi = (0, 0)] = 1− wq −
wu + w1.

Using Gartner Ellis we will show the following lemma, from which theorem 5
follows:

Lemma 2.3.1. there is a (wx, wy, w1, w2, p1, p2, pq, pu)-sensitive filter, where

|S|−1 log 1/p1 = Λ(wq, wu, w1, tq, tu) + o(1),

|S|−1 log 1/p2 = Λ(wq, wu, w2, tq, tu) + o(1),

|S|−1 log 1/pq = D(tq, wq) + o(1),

|S|−1 log 1/pu = D(tu, wu) + o(1).

2.3.1 Large Deviations

Theorem 6 (Gartner-Ellis theorem [DZ10, Theorem 2.3.6 and Corollary 6.1.6]). Let
{Xi}i∈N ⊆ Rk be a sequence of iid. random vectors. Let Sn = 1

n ∑n
i=0 Xi be the empirical

means. Define the logarithmic generating function Λ(λ) = log E exp〈λ, X1〉, and the rate
function Λ∗(z) = supλ∈Rk{〈λ, z〉 −Λ(λ)}. If Λ(ε) < ∞ for all ε ∈ Rk with ‖ε‖2 < δ for
some δ > 0 small enough, then for any set F ⊆ Rk:

lim
n→∞

log Pr [Sn ∈ F] = − inf
z∈F

Λ∗(z).

28 Chapter 2. Small Sets Need Supermajorities: Towards Optimal Hashing-based Set Similarity

From this we can derive the more simple:

Lemma 2.3.2 (Multi Dimensional Cramer). Let Xi ∈ Rk be a sequence of iid. random
variables, and let t ∈ Rk be a list of values such that E[X1] ≤ t ≤ max X1. Let Λ(λ) =
log E[exp〈X1, λ〉] be finite for all λ ∈ Rk then

1
n

log Pr

[
1
n

n

∑
i=1

Xi ≥ t

]
= −Λ∗(t) + o(1)

where Λ∗(t) = 〈t, λ〉 −Λ(λ) and ∇Λ(λ) = t.

Proof. We use the Gartner-Ellis theorem. Since we assume Λ(z) is finite everywhere, it
is also so an epsilon ball around 0. Next note that Λ(λ) is convex so 〈λ, z〉 −Λ(λ) is
maximized at ∇Λ(λ) = z.

We need to show infz≥t Λ∗(z) = Λ∗(t). Let µ = E[X1].
Note dΛ

dλi
(0) = µi (since Λ is a mgf), thus if zi = µi then λi = 0 and so dΛ∗

dzi
(µi) = 0.

From this, and the convexity of Λ∗ we get 〈∇Λ∗(z), z− µ〉 ≥ 0, and so for any point
in {z ≥ t} we can always decrease Λ∗(z) be moving towards µ, showing that the
minimum is achieved at z = t.

See also the details in the appendix and in [75]. Finally we can get the specific
version we need:

Lemma 2.3.3. Let Xi ∈ {0, 1}2, i ∈ [m], have joint probability distribution P ∈ [0, 1]2×2

such that Pr[Xi = (a, b)] = Pa,b. Let w = P1,1, µ1 = P1,1 + P1,2 and µ2 = P1,1 + P2,1, if
µ1 < t1 < 1, µ2 < t2 < 1, then

1
m

log Pr

[
1
m

n

∑
i=1

Xi,1 ≥ t1 ∧ 1
m

n

∑
i=1

Xi,2 ≥ t2

]
= −Λ(µ1, µ2, w, t1, t2) + o(1),

(where Λ is define in definition 5.) If t1 < µ1 then (≥) above is replaced by ≤ and similarly
for t2 < µ2.

Proof. This follows directly by lemma 2.3.2, when we plug-in λ1, λ2 to check that
indeed

t = ∇Λ(λ) =
1

beλ1+λ2 + (x− b)eλ1 + (y− b)eλ2 + (1− x− y + b)

[
beλ1+λ2 + (x− b)eλ1

beλ1+λ2 + (y− b)eλ2

]
.

This proves theorem 5.

2.3.2 Embedding onto the Sphere

Recall lemma 2.1.1: Let g, h : {0, 1}d → R be function on the form g(1) = a1x + b1 and
h(y) = a2y+ b2. Let ρ(x, y, y′) = f (α(x, y))/ f (α(x, y′)) where α(x, y) = 〈x, y〉/‖x‖‖y‖
be such that

f (z) ≥ 0, d
dz

(
(±1− z) d

dz log f (z)
)
≥ 0 and d3

dz3 log f (z) ≤ 0

2.3. Upper bounds 29

������

-1.5 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

a

b

0.82

0.84

0.86

0.88

0.90

0.92

0.94

(a) ρ-hyperplane

������

-1.5 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

a

b

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

(b) ρ-spherical

Figure 2.2: ρ-values for hyperplane and spherical LSH under different shifts.

for all z ∈ [−1, 1]. Assume we know that ‖x‖2
2 = wqd, ‖y‖2

2 = wud, 〈x, y′〉 = w1d and
〈x, y〉 = w2d, then arg mina1,b1,a2,b2

ρ(g(x), h(y), h(y′)) = (1,−wq, 1,−wu).
In this section we will show that Hyperplane [52] and Spherical [26] LSH both

satisfy the requirements of the lemma. Hence we get two algorithms with ρ-values:

ρhp =
log(1− arccos(α)/π)

log(1− arccos(β)/π)
, ρsp =

1− α

1 + α

1 + β

1− β
.

where α =
w1−wxwy√

wx(1−wx)wy(1−wy)
and β =

w2−wxwy√
wx(1−wx)wy(1−wy)

, and space/time trade-

offs using the ρq, ρu values in [61]. 6 Figure 2.2 shows how ρ varies with different
translations a, b.

Taking tq = wq(1 + o(1)) and tu = wu(1 + o(1)) in theorem 5 recovers ρsp by
standard arguments. This implies that theorem 5 dominates Spherical LSH (for binary
data).

Lemma 2.3.4. The functions f (z) = (1 − z)/(1 + z) for Spherical LSH and f (z) =
− log(1− arccos(z)/π) for Hyperplane LSH satisfy lemma 2.1.1.

Proof. For Spherical LSH we have f (z) = (1− z)/(1 + z) and get

d
dz

(
(±1− z) d

dz log f (z)
)
= 2(1∓ 2z + z2)/(1− z2)2 ≥ 0,

d3

dz3 log f (z) = −4(1 + 3z2)/(1− z2)3 ≤ 0.

For Hyperplane LSH we have f (z) = − log(1− arccos(z)/π) and get

d
dz

(
(1− z) d

dz log f (z)
)
=

(arccos(z)−
√

1− z2 − π) log(1− arccos(z)/π)−
√

1− z2

(1 + z)
√

1− z2(π − arccos(z))2 log(1− arccos(z)/π)2
,

d
dz

(
(−1− z) d

dz log f (z)
)
=

(arccos(z) +
√

1− z2 − π) log(1− arccos(z)/π) +
√

1− z2

(1− z)
√

1− z2(π − arccos(z))2 log(1− arccos(z)/π)2
.

6Unfortunately the space/time aren’t on a form applicable to lemma 2.1.1. From numerical
experiments we however still conjecture that the embedding is optimal for those as well.

30 Chapter 2. Small Sets Need Supermajorities: Towards Optimal Hashing-based Set Similarity

In both cases the denominator is positive, and the numerator can be shown to be
likewise by applying the inequalities

√
1− z2 ≤ arccos(z),

√
1− z2 + arccos(z) ≤ π

and x ≤ log(1 + x).
The d3

dz3 log f (z) ≤ 0 requirement is a bit trickier, but a numerical optimization
shows that it’s in fact less than −1.53.

Finally we prove the embedding lemma:

Proof of lemma 2.1.1. We have

α =
〈x + a, y + b〉
‖x + a‖‖y + b‖ =

w1 + wxb + wya + ab√
(wx(1 + a)2 + (1− wx)a2)(wy(1 + b)2 + (1− wy)b2)

and equivalent with w2 for β. We’d like to show that a = −wx, b = −wy is a minimum
for ρ = 1−α

1+α
1−β
1+β .

Unfortunately ρ is not convex, so it is not even clear that there is just one minimum.
To proceed, we make the following substitution a→ (c + d)

√
wx(1− wx)− wx, b→

(c− d)
√

wy(1− wy)− wy to get

α(c, d) =
cd +

w1−wxwy√
wx(1−wx)wy(1−wy)√

(1 + c2)(1 + d2)
.

We can further substitute cd 7→ rs and
√
(1 + c2)(1 + d2) 7→ r + 1 or r ≥ 0, −1 ≤ s ≤ 1,

since 1 + cd ≤
√
(1 + c2)(1 + d2) by Cauchy Schwartz, and (cd,

√
(1 + c2)(1 + d2))

can take all values in this region.
The goal is now to show that h = f

(rs+x
r+1

) /
f
(

rs+y
r+1

)
, where 1 ≥ x ≥ y ≥ −1, is

increasing in r. This will imply that the optimal value for c and d is 0, which further
implies that a = −wx, b = −wy for the lemma.

We first show that h is quasi-concave in s, so we may limit ourselves to s = ±1. Note
that log h = log f

(rs+x
r+1

)
− log f

(
rs+y
r+1

)
, and that d2

ds2 log f
(rs+x

r+1

)
=
(r

1+r
)2 d2

dz2 log f (z)
by the chain rule. Hence it follows from the assumptions that h is log-concave, which
implies quasi-concavity as needed.

We now consider s = ±1 to be a constant. We need to show that d
dr h ≥ 0.

Calculating,

d
dr

f
(

rs + x
r + 1

)/
f
(

rs + y
r + 1

)
=

(s− x) f
(

rs+y
r+1

)
f ′
(rs+x

r+1

)
− (s− y) f

(rs+x
r+1

)
f ′
(

rs+y
r+1

)
(1 + r)2 f

(
rs+y
r+1

)2 .

Since f ≥ 0 it suffices to show d
dx (s − x) f ′

(rs+x
r+1

) /
f
(rs+x

r+1

)
≥ 0. If we substitute

z = rs+x
r+1 , z ∈ [−1, 1], we can write the requirement as d

dz (s− z) f ′(z)/ f (z) ≥ 0 or
d
dz

(
(±1− z) d

dz log f (z)
)
≥ 0.

2.3. Upper bounds 31

2.3.3 A MinHash dominating family

We complete the arguments from section 2.1.2.
We first state the LSF-Symmetrization lemma implicit in [63]:

Lemma 2.3.5 (LSF-Symmetrization). Given a (p1, p2, pq, pu)-sensitive LSF-family, we can
create a new family that is (p1q/p, p2q/p, q, q)-sensitive, where p = max{pq, pu} and
q = min{pq, pu}.

For some values of p1, p2, pq, pu this will be better than simply taking max(ρu, ρq).
In particular when symmetrization may reduce ρu by a lot by reducing its denominator.

Proof. W.l.o.g. assume pq ≥ pu. When sampling a query filter, Q ⊆ U, pick a random
number $ ∈ [0, 1]. If $ > pu/pq use ∅ instead of Q. The new family then has
p′q = pq · pu/pq and so on giving the lemma.

Using this lemma it is easy to make a version of supermajority LSF that always beats
Chosen Path: Simply take tq = tu = 1 and apply lemma 2.3.5. Then we have exactly
the same ρ value as Chosen Path. We do however conjecture that symmetrization is
not nessecary for supermajorities, since we have another (presumably more efficient)
form of symmetrization via assymetric tu 6= tq.

Now recall the filter family from the introduction:

F0(x) = [s0 ∈ x], F1(x) = [s1 ∈ x ∧ s0 6∈ x], . . . , Fi(x) = [si ∈ x ∧ s0 6∈ x ∧ · · · ∧ si−1 6∈ x], . . .

where (si ∈ U)i∈N is a random sequence by sampling elements of U with replacement.
Using just one of these functions, combined with symmetrization, gives the ρ value:

ρi = log
(1− wq − wu + w1)

iw1

max{(1− wq)iwq, (1− wu)iwu}

/
log

(1− wq − wu + w2)
iw2

max{(1− wq)iwq, (1− wu)iwu}
.

We want to show ρmh = log w1
wq+wu−w1

/
log w2

wq+wu−w2
≥ mini≥0 ρi. For this we show

the following lemma, which intuitively says that it is never advantageous to combine
multiple filter families:

Lemma 2.3.6. The function f (x, y, z, t) = log(max{x, y}/z)/ log(max{x, y}/t), defined
for min{x, y} ≥ z ≥ t > 0, is quasi-concave.

This means in particular that

log(max{x + x′, y + y′}/(z + z′))
log(max{x + x′, y + y′}/(t + t′))

≥ min
{

log(max{x, y}/z)
log(max{x, y}/t)

,
log(max{x′, y′}/z′)
log(max{x′, y′}/t′)

}
,

when the variables are in the range of the lemma.

Proof. We need to show that the set

{(x, y, z, t) : log(max{x, y}/z)/ log(max{x, y}/t) ≥ α} = {(x, y, z, t) : max{x, y}1−αtα ≥ z}

is convex for all α ∈ [0, 1] (since z ≥ t so f (x, y, z, t) ∈ [0, 1]). This would follow if
g(x, y, t) = max{x, y}1−αtα would be quasi-concave itself, and the eigenvalues of the
Hessian of g are exactly 0, 0 and −(1− α)αtα−2 max{x, y}−α−1 (max{x, y}2 + t2) so g
is even concave!

32 Chapter 2. Small Sets Need Supermajorities: Towards Optimal Hashing-based Set Similarity

We can then show that MinHash is always dominated by one of the filters described,
as

ρmh =
log w1

wx+wy−w1

log w2
wx+wy−w2

=
log ∑i≥0(1−wx−wy+w1)

iw1
max{∑i≥0(1−wx)iwx, ∑i≥0(1−wy)iwy}

log ∑i≥0(1−wx−wy+w2)iw2
max{∑i≥0(1−wx)iwx, ∑i≥0(1−wy)iwy}

≥ min
i≥0

log (1−wx−wy+w1)
iw1

max{(1−wx)iwx,(1−wy)iwy}

log (1−wx−wy+w2)iw2
max{(1−wx)iwx,(1−wy)iwy}

,

where the right hand side is exactly the symmetrization of the filters F(i). By mono-
tonizity of (1−wx)iwx and (1−wy)iwy we can further argue that it is even possible to
limit ourselves to one of i ∈ {0, ∞, log(wx/wy)/ log((1− wx)/(1− wy))}, where the
first gives Chosen Path, the second gives Chosen Path on the complemented sets, and
the last gives a balanced trade-off where (1− wx)iwx = (1− wy)iwy.

2.4 Lower bounds

In the remainder of this section, we’ll assume d = ω(log n). We proceed to define the
hard distributions for all further lower bounds.

1. A query x ∈ {0, 1}d is created by sampling d random independent bits
Bernoulli(wq) distribution.

2. A dataset P ⊆ {0, 1}d is constructed by sampling n− 1 vectors with random
independent bits from such that y′i ∼ Bernoulli(w2/wq) if xi = 1 and y′i ∼
Bernoulli((wu − w2)/(1− wq)) otherwise, for all y′ ∈ P.

3. A ‘close point’, y, is created by yi ∼ Bernoulli(w1/wq) if xi = 1 and yi ∼
Bernoulli((wu − w1)/(1− wq)) otherwise. This point is also added to P.

We thus have E|x ∩ y| = dw1 and E|y| = dwu as well as E|x ∩ y′| = dw2 and E|y′| =
dwu for all y′ ∈ P other than the close point. With high probability these are tight up
to factors 1 + o(1) and by a union bound they hold for all y′ ∈ P.

Adding o(log n) coordinates to x and each y one may ensure equal weight of
the query/database sets without changing the inner products. Hence any (wq(1±
o(1)), wu(1 ± o(1)), w1(1 − o(1)), w2(1 + o(1)))-GapSS data structure must thus be
able to find y given x.

Since the dataset is random, we’ll assume the data structure is deterministic.
In particular we will assume the existence of a single pair of filter functions f , g :
{0, 1}d → {0, 1}. We then have for our LSF

p1 = Pr
x,y
[f (x) = 1∧ g(y) = 1],

p2 = Pr
x,y′

[f (x) = 1∧ g(y′) = 1],

pq = Pr
x
[f (x) = 1],

pu = Pr
y
[g(y) = 1].

2.4. Lower bounds 33

These are boolean functions over biased spaces. Hence we will next intro-
duce the p-biased boolean analysis. Our goal will be to lower bound the ρ-
values from theorem 4, over all such functions: ρq = log(pq/p1)/ log(pq/p2) and
ρu = log(pu/p1)/ log(pq/p2).

In the analysis of boolean functions is is common to use {−1, 1}d as the function
domain. We’ll map 1 to −1 (true) and 0 to 1 (false).

2.4.1 p-biased analysis

Given functions f , g : {−1, 1}n → {0, 1}, we write

f (x) = ∑
S⊆[n]

f̂ (S)φS(x), g(y) = ∑
S⊆[n]

ĝ(S)γS(y) (2.4)

where f̂ , ĝ : 2[n] → R and φ(xi) = xi−µx
σx

, γ(yi) =
yi−µy

σy
for µx = 1 − 2wq, σx =

2
√

wq(1− wq) and µy = 1− 2wu, σy = 2
√

wu(1− wu). Finally φS, γS : {−1, 1}n → R

are defined φS(x) = ∏i∈S φ(xi) and respectively for y.
Any boolean function can be expanded as (2.4), but it is particularly useful in our

case. To see why, let π be the probability distribution, with the following probability
mass function: π(−1) = wq, π(1) = 1− wq, and let πn : {−1, 1}n → [0, 1] be the
product distribution on {−1, 1}n. We then have the useful properties:

px = Pr
x∼πn

[f (x) = 1] = Ex∼πn [f (x)] = Ex∼πn [∑
S⊆[n]

f̂ (S)φS(x)] = f̂ (∅)

= Ex∼πn
bx
[f (x)2] = Ex∼πn

bx
[∑
S,T⊆[n]

f̂ (S) f̂ (T)φS(x)φT(x)] = ∑
S⊆[n]

f̂ (S)2.

If we think of f as an LSF-filter, px = Prx∼πn [f (x) = 1] is the probability that the filter
accepts a random point with ‘roughly’ weight wq. (Here the weight is the number of
-1’s, as is common in boolean function analysis.)

Next, we let ψ be the probability distribution, with the following probability mass
function:

ψ(−1,−1) = w ψ(−1, 1) = wq − w
ψ(1,−1) = wu − w ψ(1, 1) = 1− wq − wu + w,

then p1 = Prx,y∼ψn [f (x) = 1∧ g(y) = 1] is the probability that a random query point
and a random data point both get caught by their respective filter. This has the

34 Chapter 2. Small Sets Need Supermajorities: Towards Optimal Hashing-based Set Similarity

following nice form:

p1 = Ex,y∼ψn
b
[f (x)g(y)]

= Ex,y∼ψn [∑
S,T⊆[n]

f̂ (S)ĝ(T)φS(x)γT(x)]

= ∑
S⊆[n]

f̂ (S)ĝ(S)Ex,y∼ψn [φS(x)γT(x)]

= ∑
S⊆[n]

f̂ (S)ĝ(S)Ex,y∼ψn

[
∏
i∈S

xi − µx

σx

yi − µy

σy

]

= ∑
S⊆[n]

f̂ (S)ĝ(S)
(

Ex,y∼ψn [xiyi]− µxµy

σxσy

)|S|

= ∑
S⊆[n]

f̂ (S)ĝ(S)

 w1 − wqwu√
wq(1− wq)wu(1− wu)

|S| . (2.5)

Replacing w1 with w2 we get the equivalent expression for p2. Note that if w2 = wqwu

equation (2.5) is just f̂ (∅)ĝ(∅) = px py.

2.4.2 O’Donnel Method (wq = wu, w2 > wqwu)

The simplest approach is to use the expansion directly. This is what O’Donnel
used [145] to prove the first optimal LSH lower bounds for data-independent hashing.

We define the norm ‖ f ‖q = (Ex∼πn f (x)q)1/q and equivalently for g with its
respective distribution. Note that since f and g are boolean, we have ‖ f ‖q =

(Ex∼πn f (x))1/q = p1/q
x . This will turn out to be very useful.

Recall theorem 3. We will prove something slightly stronger:

Lemma 2.4.1. Assume an stream-LSF scheme uses function f , g : {−1, 1}n → {0, 1}.
Assume further that ∑|S|=k f̂ (S)ĝ(S) ≥ 0 for all k ∈ [n], then any LSF data structure must
have

ρu, ρq ≥ log

 w1 − wqwu√
wq(1− wq)wu(1− wu)

/ log

 w2 − wqwu√
wq(1− wq)wu(1− wu)

 .

In particular this bound holds when f̂ = ĝ, since ∑|S|=k f̂ (S)2 is clearly non-
negative. If wq = wu and f = g we would get that, which is how to get theorem 3.

Proof. Let α =
w1−wqwu√

wq(1−wq)wu(1−wu)
and β =

w2−wqwu√
wq(1−wq)wu(1−wu)

, such that p1 =

∑S⊆[n] f̂ (S)ĝ(S)α|S| and p2 = ∑S⊆[n] f̂ (S)ĝ(S)β|S|.
By Hölder’s inequality ∑S f̂ (S)ĝ(S) ≤ min{‖ f ‖1‖g‖∞, ‖ f ‖∞‖g‖1} = min{pq, pu}.

Let p = min{pu, pq}. By assumption ∑|S|=k f̂ (S)ĝ(S) ≥ 0 for all k, so we have that
∑k αk(∑|S|=k f̂ (S)ĝ(S))/p is a weighted average over the αk terms. As such we can use

2.4. Lower bounds 35

the power-means inequality:

(p1/p)1/ log α =
(
∑
k
(ek)log α ∑

|S|=k
f̂ (S)ĝ(S)/p

)1/ log α

≤
(
∑
k
(ek)log β ∑

|S|=k
f̂ (S)ĝ(S)/p

)1/ log β
= (p2/p)1/ log β.

which implies the lower bound on ρu, ρq:

ρu, ρq ≥
log p1/p
log p2/p

≥ log α

log β
.

For ρq the inequality above follows from log(p/p1)/ log(p/p2) being increasing in p.
For ρu it is simply increasing the denominator or decreasing the numerator.

As noted the bound is sharp against our upper bound when wu, wq, w1, w2 are all
small. Also notice that log α/ log β ≤ 1−α

1+α
1−β
1+β is a rather good approximation for α

and β close to 1. Here the right hand side is the ρ value of Spherical LSH with the
batch-normalization embedding discussed in section 2.3.2.

It would be interesting to try an extend this bound to get rid of the
∑|S|=k f̂ (S)ĝ(S) ≥ 0 assumption.

Note that the lower bound becomes 0 when w2 → wqwu. In the next section we
will find a bound for exactly this case.

2.4.3 Hypercontractive Lower Bound 1 (w2 = wqwu)

Recall theorem 2: Given α ≥ 0 and 0 ≤ r, s ≤ 1/2, let uq = log 1−wq
wq

and uu = log 1−wu
wu

.

If r and s are such that sinh(uqr)
sinh(uq(1−r))

sinh(uus)
sinh(uu(1−s)) =

(
w1−wqwu

wq(1−wq)wu(1−wu)

)2
, then any LSF

data structure must have

ρq ≥ 1− s− αr and ρu ≥ α− s− αr.

Proof. We will prove this theorem using the p-biased version of the hypercontractive
inequality, which says:

Theorem 7 ([143] also [141] Theorem 10.18 and [187]). Let (Ω, π) be a finite probability
space, |Ω| ≥ 2, in which every outcome has probability at least λ < 1/2. Let f ∈ L2(Ω, π).

Then for any q > 2 and υ =
√

sinh(u/q)
sinh(u/q′) ,

∑
S⊆[n]

υ2 f̂ (S)2 ≤ ‖ f ‖q′

where 1/q + 1/q′ = 1 and u = log 1−λ
λ .

We can generalize this to two general functions, using Cauchy Schwartz:

p1 = ∑
S⊆[n]

√
υσ
|S| f̂ (S)ĝ(S) ≤

√
∑

S⊆[n]
υ|S| f̂ 2(S) ∑

S⊆[n]
σ|S| ĝ2(S) ≤ ‖ f ‖1/(1−r)‖g‖1/(1−s) = p1−r

x p1−s
y .

36 Chapter 2. Small Sets Need Supermajorities: Towards Optimal Hashing-based Set Similarity

where υ = sinh(uxr)
sinh(ux(1−r)) , σ =

sinh(uys)
sinh(uy(1−s)) , ux = log 1−wq

wq
, uy = log 1−wu

wu
and r, s < 1/2.

In the case w2 = wqwu we have p2 = pu pq by the discussion in section 2.4.1. Using
this, we simply lower bound ρq and ρu in theorem 4 by

ρq =
log p1/pq

log p2/pq
≥

log p1−r
q p1−s

u /pq

log pq pu/pq
= 1− s− αr and

ρu =
log p1/pu

log p2/pq
≥

log p1−r
q p1−s

u /pu

log pq pu/pq
= α− s− αr,

where α =
log 1/pq
log 1/pu

.

If we set wq = wu, α = 1, r = s and σ = υ, then the theorem asks us to set

r =
log eux (1+eux υ)

eux+υ

2ux
=

log w1(1−wq)2

(1−2wq+w1)w2
q

2 log 1−wq
wq

= 1/2−
log 1−2wq+w1

w1

1−wq
wq

2 log 1−wq
wq

,

where we note that r < 1/2 since w1 < 1− 2wq + w1. Now ρq, ρu ≥ 1− r− s is exactly

log w1
1−2wq+w1

1−wq
wq

/
log 1−wq

wq
matching corollary 1 as we wanted.

We would like a general way to optimize over r and s, but as with our upper
bounds, we don’t know how to solve this on a closed form. We can however show the
following equation which must be satisfied by optimal s and r:

We have dυ
dr = ux sinh(ux)

sinh(ux(1−r))2 and likewise for σ and s. By Lagrange multipliers we

get the two equations, for some λ ∈ R: λσux sinh(ux)
sinh(ux(1−r))2 = α, λυuy sinh(uy)

sinh(uy(1−s))2 = 1. Dividing
through gives the condition:

ux sinh(ux) sinh(uys) sinh(uy(1− s))
uy sinh(uy) sinh(uxr) sinh(ux(1− r))

= α.

Because of the r, s < 1/2 condition, this is however not always possible to achieve.
Figure 2.1 suggests that the lower bound is tight towards theorem 5 when wq = wu
and this condition can be met.

Wolff [187] has shown how to extend the p-biased hypercontractive inequality
beyond r, s ≤ 1/2. However his work is only asymptotic. From the plots it is also
clear that for wq 6= wu theorem 2 is not sharp. It thus seems evident that we need new
methods. In the next section we will investigate a new two-function hypercontractive
inequality for this purpose.

2.4.4 Hypercontractive Lower Bound 2 (w2 = wqwu)

We conjecture a new hypercontractive inequality:

Conjecture 2 (Two-Function p-Biased Hypercontractivity Inequality). For 0 < wqwu ≤
w ≤ wq, wu < 1, Let ψ : {−1, 1}2 → [0, 1] be the joint probability density function

∼
[

w wu−w
wq−w 1−wq−wu+w

]
.

2.4. Lower bounds 37

For any pair of boolean functions f , g : {−1, 1}n → {0, 1} then

Ex,y∼ψ[f (x)g(y)] ≤ ‖ f ‖r‖g‖s

where r = s = log (1−wq)(1−wu)
wqwu

/
log 1−wq−wu+w

w .
If w ≤ wqwu then the inequality goes the other direction.

We reduce it to a simple two-variable inequality, from which conjecture 2 and
conjecture 1 would follow. For this we will use the following inductive result by
O’Donnell, which we have slightly generalized to support (x, y) from arbitrary shared
distributions, rather than just ρ correlated. The proof in O’Donnell [141] goes through
without changes.

Theorem 8 (Two-Function Hypercontractivity Induction Theorem [141]). Assume that

E
(x,y)∼π

[f (x)g(y)] ≤ ‖ f ‖r‖g‖q

holds for every f , g ∈ L2(Ω, π). Then the inequality also holds for every f , g ∈ L2(Ωn, πn).

This means we just have to show a certain ‘two point’ inequality. That is, we would
like the following to be true:

Lemma 2.4.2. For 0 < wqwu ≤ w ≤ wq, wu < 1, and any f−1, f1, g−1, g1 ∈ R, then

f−1g−1w + f−1g1(wq − w) + f1g−1(wu − w) + f1g1(1− wq − wu + w)

≤ (wq f r
−1 + (1− wq) f r

1)
1/r(wugs

−1 + (1− wu)gs
1)

1/s

for r = s = log (1−wq)(1−wu)
wqwu

/
log 1−wq−wu+w

w .
If w ≤ wqwu then the inequality goes the other direction.

Unfortunately we don’t have a proof of this. However computer optimization
suggests that it is true at least up to an error of 10−14. Equality is achieved when
f−1/ f1 = g−1/g1 are either 1 or (1−wq−wu +w)/w, and in these points the gradient
match, which suggests the choice of r, s is sharp.

Dividing through, we may assume that f (1) and g(1) are both either 0 or 1. (If the
values are negative, we can bound lsh by the positive versions. Rhs doesn’t care.) If
g(1) = 0 we just have to show

f (−1)g(−1)w + g(−1)(wu − w) ≤ w1/r
q f (−1)w1/s

u g(−1)

which follows from the one-function Hyper Contractive Inequality.
Otherwise we can focus on proving

xyw + x(wq − w) + y(wu − w) + (1− wq − wu + w)

≤ (wqxr + 1− wq)
1/r(wuyr + 1− wu)

1/r

where we defined x = f (−1)/ f (1), y = g(−1)/g(1).

38 Chapter 2. Small Sets Need Supermajorities: Towards Optimal Hashing-based Set Similarity

Assuming now conjecture 2 we continue to prove Lower bound 2 (conjecture 1).
Following the same approach as in Lower bound 1, we get

ρq =
log p1/pq

log p2/pq
≥

log p1/r
q p1/s

u /pq

log pq pu/pq
= (1/r− 1)α + 1/s and

ρu =
log p1/pu

log p2/pq
≥

log p1/r
q p1/s

u /pu

log pq pu/pq
= α/r + (1/s− 1).

Which is what we wanted.

Setting α =
D(wu,1−wq)

D(wq,1−wu)
gives

ρq ≥
(1− wq − wu) log(1−wq−wu+w1

w1
)− D(wu, 1− wq)

D(wq, 1− wu)
,

ρu ≥
(1− wq − wu) log(1−wq−wu+w1

w1
)− D(wq, 1− wu)

D(wq, 1− wu)
,

matching exactly corollary 1 for w2 = wqwu and all wq, wu, w1.
Besides actually proving lemma 2.4.2, it would be nice to extend it to a complete

spectrum of r, s values. The fact that we get a match in this specific point suggests that
this may indeed be a fruitful path to showing optimality of the entire theorem 5.

2.5 Conclusion

We show new matching upper and lower bounds for Set Similarity in the symmetric
setting, wq = wu. We also show strong evidence that our upper bound is optimal in
the asymmetric setting, wq 6= wu, as well as in the time-space trade-offs. If the lower
bounds can be extended, this would unify the approaches between sparse and vectors
on the sphere, and close this important area of LSH, which has always seemed a lot
more mystical, with its ad hoc feeling MinHash approach.

Th

2.5.1 Open problems

More closed forms In particular theorem 5, but also the lower bounds, suffer from
only being indirectly stated. It would be useful to have a closed form for how to
set tu and tq for all values of wq, wu, w1, w2 - both for practical purposes and for
showing properties about the trade-off.

More lower bounds Besides proving conjecture 1 it would be useful to extend it to the
entire space/time trade-off. This would seemingly require new hypercontractive
inequalities, something that may also be useful in other parts of boolean function
analysis.

Handle small sets We currently assume that wq, wu, w1, w2 ∈ [0, 1] are constants inde-
pendent of |U|. For the purposes of finding the optimal space partition for GapSS
this is not a big deal, but for practical applications of set similarity, supporting
small sets would make supermajorities a lot more useful.

2.6. Appendix 39

Algorithms for low dimension We know that LSF can break the LSH lower bounds
when d = O(log n) [43]. It would be nice to have something similar for sets, even
though universes that small will be pretty rare.

Data dependent As mentioned, the biggest break through in LSH over the last decade
is probably data-dependent LSH. Naturally we will want to know how this can
be extended to set data.

Sparse, non-binary data We now know that threshold functions do well on binary
data and on the sphere. It is an exciting open problem to analyse how they do
on sparse data on the sphere. This may be the most common type of data in
practice.

2.6 Appendix

Lemma 2.6.1. Let X ∈ Rk be a random variable, such that the cumulant generating function
Λ(λ) = log E[exp〈λ, X〉] is finite for λ ∈ Rk. Define Λ∗(z) = supλ∈Rk{〈λ, z〉 −Λ(λ)}.
Then L(z) = (∇λΛ)−1(z) is well defined for z ∈ (min X, max X), and

Λ∗(z) = 〈z,L(z)〉 −Λ(L(z)), (2.6)
∇zΛ∗(z) = L(z), (2.7)

HzΛ∗(z) = (HλΛ)−1(z). (2.8)

Further, Λ(λ) is convex, Λ∗(z) is concave, and Λ∗(EX) = 0.

Proof of lemma 2.6.1. Finite moment-generating functions are log of a sum of analytic,
log-convex functions. Hence Λ(λ) is analytic and convex. This implies that 〈λ, z〉 −
Λ(λ) has a unique supremum at z = ∇Λ(λ), so we can define the inverse L(z) =
(∇Λ)−1(z) such that Λ∗(z) = Λ(L(z)) as needed for eq. (2.6).

For eq. (2.7) we compute using the chain-rule:

∇zΛ∗(z) = ∇z [〈z,L(z)〉 −Λ(L(z))] = zT JzL(z) + L(z)− (∇Λ(λ))T JzL(z) = L(z),

where JzL is the Jacobian of L.
For eq. (2.8) let f (λ) = ∇Λ(λ) : Rd → Rd, then L(z) = f−1(z) and we can

compute using the inverse function theorem:

HzΛ∗(z) = JzL(z) = (Jλ f (λ))−1 = (Jλ∇Λ(λ))−1 = (HλΛ)−1.

Since Λ is convex, the Hessian is positive-semidefinite, and so its inverse is negative-
semidefinite. This implies that Λ∗ is concave.

Finally, since Λ is the cumulant generating function, we have Λ(λ) = 〈λ, EX〉+
λTΣλ/2 + . . . (where Σ is the covariance matrix), and so ∇Λ(0) = EX, which gives
the last identity: L(EX) = 0.

Chapter 3

Optimal Las Vegas Locality Sensitive Data Structures
Originally published in: Annual Symposium on Foundations of Computer Science, FOCS 2017

3.1 Introduction

Locality Sensitive Hashing has been a leading approach to high dimensional similarity
search (nearest neighbour search) data structures for the last twenty years. Intense
research [95, 84, 113, 92, 93, 52, 73, 125, 151, 20, 22, 25, 43, 10, 36] has applied the
concept of space partitioning to many different problems and similarity spaces. These
data structures are popular in particular because of their ability to overcome the ‘curse
of dimensionality’ and conditional lower bounds by [186], and give sub-linear query
time on worst case instances. They achieve this by being approximate and Monte
Carlo, meaning they may return a point that is slightly further away than the nearest,
and with a small probability they may completely fail to return any nearby point.

Definition 6 ((c, r)-Approximate Near Neighbour). Given a set P of n data points in a
metric space (X, dist), build a data structure, such that given any q ∈ X, for which there is an
x ∈ P with dist(q, x) ≤ r, we return a x′ ∈ P with dist(q, x′) ≤ cr.

A classic problem in high dimensional geometry has been whether data structures
existed for (c, r)-Approximate Near Neighbour with Las Vegas guarantees, and per-
formance matching that of Locality Sensitive Hashing. That is, whether we could
guarantee that a query will always return an approximate near neighbour, if a near
neighbour exists; or simply, if we could rule out false negatives? The problem has seen
practical importance as well as theoretical. There is in general no way of verifying that
an LSH algorithm is correct when it says ‘no near neighbours’ - other than iterating
over every point in the set, in which case the data structure is entirely pointless. This
means LSH algorithms can’t be used for many critical applications, such as finger print
data bases. Even more applied, it has been observed that tuning the error probability
parameter is hard to do well, when implementing LSH [84, 34]. A Las Vegas data
structure entirely removes this problem. Different authors have described the problem
with different names, such as ‘Las Vegas’ [91], ‘Have no false negatives’ [86, 148],
‘Have total recall’ [156], ‘Are exact’ [32] and ‘Are explicit’ [108].

Recent years have shown serious progress towards finally solving the problem.
In particular [148] showed that the problem in Hamming space admits a Las Vegas
algorithm with query time dn1.38/c+o(1), matching the dn1/c data structure of [95]

42 Chapter 3. Optimal Las Vegas Locality Sensitive Data Structures

up to a constant factor in the exponent. In this paper we give an algorithm in the
Locality Sensitive Filter framework [43, 61], which not only removes the factor 1.38,
but improves to dn1/(2c−1)+o(1) in the case cr ≈ d/2, matching the algorithms of [21]
for Hamming space.

We would like to find an approach to Las Vegas LSH that generalizes to the
many different situations where LSH is useful. Towards that goal, we present as
second algorithm for the approximate similarity search problem under Braun-Blanquet
similarity, which is defined for sets x, y ⊆ [d] as sim(x, y) = |x ∩ y|/ max(|x|, |y|). We
refer to the following problem definition:

Definition 7 (Approximate similarity search). Let P ⊆ P([d]) be a set of |P| = n subsets
of [d]; (here P(X) denotes the powerset of X.) let sim : P([d]) × P([d]) → [0, 1] be a
similarity measure. For given s1, s2 ∈ [0, 1], s1 > s2, a solution to the “(s1, s2)-similarity
search problem under sim” is a data structure that supports the following query operation: on
input q ⊆ [d], for which there exists a set x ∈ P with sim(x, q) ≥ s1, return x′ ∈ P with
sim(x′, q) > s2.

The problem has traditionally been solved using the Min-Hash LSH [48, 47], which
combined with the results of Indyk and Motwani [95] gives a data structure with
query time dnρ and space dn1+ρ for ρ = log s1/ log s2. Recently it was shown by [63]
that this could be improved for vectors of equal weight to ρ = log 2s1

1+s1

/
log 2s2

1+s2
. We

show that it is possible to achieve this recent result with a data structure that has no
false negatives.

3.1.1 Summary of Contributions

We present the first Las Vegas algorithm for approximate near neighbour search, which
gives sub-linear query time for any approximation factor c > 1. This solves a long
standing open question from [91] and [148]. In particular we get the following two
theorems:

Theorem 9. Let X = {0, 1}d be the Hamming space with metric dist(x, y) = ‖x ⊕ y‖ ∈
[0, d] where ⊕ is “xor” or addition in Z2. For every choice of 0 < r, 1 < c and cr ≤ d/2, we
can solve the (c, r)-approximate near neighbour problem in Hamming space with query time
dnρ and space usage dn + n1+ρ where ρ = 1/c + Ô((log n)−1/4).

Note: Ô hides log log n factors.

Corollary 4. When r/d = Ω((log n)−1/6), we get the improved exponent ρ = 1−cr/d
c(1−r/d) +

Ô((log n)−1/3d/r).

This improves upon theorem 9 when r/d is constant (or slightly sub-constant),
including in the important “random case”, when r/d = 1/(2c) where we get ρ =
1/(2c− 1) + o(1).

Theorem 10. Let sim be the Braun-Blanquet similarity sim(x, y) = |x ∩ y|/ max(|x|, |y|).
For every choice of constants 0 < s2 < s1 < 1, we can solve the (s1, s2)-similarity prob-
lem over sim with query time dnρ and space usage dn + n1+ρ where ρ = log s1/ log s2 +
Ô((log n)−1/2).

3.1. Introduction 43

For sets of fixed size w, the dn terms above can be improved to wn. It is also
possible to let s1 and s2 depend on n with some more work.

The first result matches the lower bounds by [142] for “data independent” LSH data
structures for Hamming distance and improves upon [148] by a factor of log 4 > 1.38
in the exponent. By deterministic reductions from `2 to `1 [94] and `1 to hamming
(appendix 3.6.1), this also gives the best currently known Las Vegas data structures for
`1 and `2 in Rd. The second result matches the corresponding lower bounds by [63]
for Braun-Blanquet similarity and, by reduction, Jaccard similarity. See table 3.1 for
more comparisons.

Detaching the data structures from our constructions, we give the first explicit
constructions of large Turán Systems [169], which are families T of k-subsets of [n],
such that any r-subset of [n] is contained in a set in T . Lemma 3.4.1 constructs
(n, k, r)-Turán Systems using (n/k)reχ sets, where χ = O(

√
r log r + log k + log log n).

For small values of k this is sharp with the lower bound of (n
r)/(

k
r), and our systems

can be efficiently decoded, which is likely to have other algorithmic applications.

3.1.2 Background and Related Work

The arguably most successful technique for similarity search in high dimensions is
Locality-Sensitive Hashing (LSH), introduced in 1998 by [95, 88]. The idea is to make
a random space partition in which similar points are likely to be stored in the same
region, thus allowing the search space to be pruned substantially. The granularity of
the space partition (the size/number of regions) is chosen to balance the expected
number of points searched against keeping a (reasonably) small probability of pruning
away the actual nearest point. To ensure a high probability of success (good recall)
one repeats the above construction, independently at random, a small polynomial (in
n) number of times.

In [148, 32] it was shown that one could change the above algorithm to not do
the repetitions independently. (Eliminating the error probability of an algorithm by
independent repetitions, of course, takes an infinite number of repetitions.) By making
correlated repetitions, it was shown possible to reach zero false negatives much faster,
after only polynomially many repetitions. This means, for example, that they needed
more repetitions than LSH does to get 0.99 success rate, but fewer than LSH needs for
success rate 1− 2−n.

An alternative to LSH was introduced by [43, 77]. It is referred to as Locality
Sensitive Filters, or LSF. While it achieves the same bounds as LSH, LSF has the
advantage of giving more control to the algorithm designer for balancing different
performance metrics. For example, it typically allows better results for low dimensional
data, d = O(log n), and space/time trade-offs [25]. The idea is to sample a large
number of random sections of the space. In contrast to LSH these sections are not
necessarily partitions and may overlap heavily. For example, for points on the sphere
Sd−1 the sections may be defined by balls around the points of a spherical code. One
issue compared to LSH is that the number of sections in LSF is very large. This means
we need to impose some structure so we can efficiently find all sections containing
a particular point. With LSH the space partitioning automatically provided such an
algorithm, but for LSF it is common to use a kind of random product code. (An

44 Chapter 3. Optimal Las Vegas Locality Sensitive Data Structures

interesting alternative is [63], which uses a random branching processes.) LSF is
similar to LSH in that it only approaches 100% success rate as the number of sections
goes to infinity.

The work in this paper can be viewed as way of constructing correlated, efficiently
decodable filters for Hamming space and Braun-Blanquet similarity. That is, our filters
guarantee that any two close points are contained in a shared section, without having
an infinite number of sections. Indeed the number of sections needed is equal to that
needed by random constructions for achieving constant success probability, up to no(1)

factors. It is not crucial that our algorithms are in the LSF framework rather than LSH.
Our techniques can make correlated LSH space partitions of optimal size as well as
filters. However the more general LSF framework allows for us to better show of the
strength of the techniques.

One very important line of LSH/LSF research, that we don’t touch upon in this
paper, is that of data dependency. In the seminal papers [22, 31, 25] it was shown that
the performance of space partition based data structures can be improved, even in the
worst case, by considering the layout of the points in the data base. Using clustering,
certain bad cases for LSH/LSF can be removed, leaving only the case of “near random”
points to be considered, on which LSH works very well. It seems possible to make
Las Vegas versions of these algorithms as well, since our approach gives the optimal
performance in these near random cases. However one would need to find a way to
derandomize the randomized clustering step used in their approach.

There is of course also a literature of deterministic and Las Vegas data structures
not using LSH. As a baseline, we note that the “brute force” algorithm that stores
every data point in a hash table, and given a query, q ∈ {0, 1}d, looks up every ∑r

k=1 (
d
k)

point of Hamming distance most r. This requires r log(d/r) < log n to be sub-linear,
so for a typical example of d = (log n)2 and r = d/10 it won’t be practical. In [69] this
was somewhat improved to yield n(log n)r time, but it still requires r = O(

log n
log log n) for

queries to be sub-linear. We can also imagine storing the nearest neighbour for every
point in {0, 1}d. Such an approach would give fast (constant time) queries, but the
space required would be exponential in r.

In Euclidean space (`2 metric) the classical K-d tree algorithm [46] is of course
deterministic, but it has query time n1−1/d, so we need d = O(1) for it to be strongly
sub-linear. Allowing approximation, but still deterministic, [34] found a (d

c−1)
d algo-

rithm for c > 1 approximation. They thus get sublinear queries for d = O(
log n

log log n).
For large approximation factors [88] gave a deterministic data structure with query

time O(d log n), but space and preprocessing more than n ·O(1/(c− 1))d. In a different
line of work, [91] gave a deterministic (dε−1 log n)O(1) query time, fully deterministic
algorithm with space usage nO(1/ε6) for a 3 + ε approximation.

See Table 3.1 for an easier comparison of the different results and spaces.

3.1.3 Techniques

Our main new technique is a combination of ‘splitters’ as defined by [136, 16], and
‘tensoring’ which is a common technique in the LSH literature.

3.1. Introduction 45

Reference Space Exponent,
search
time

Comments

[46] `2 1− 1/d Exact algorithm, Fully deterministic.

[69] Hamming r log log n
log n Sub-linear for r < log n

log log n . Exact.

[34] `2 d log(d/(c−1))
log n Sub-linear for d <

log n
log log n .

[88] Hamming o(1) c-approximation, Fully deterministic,
(1/(c− 1))d space.

[91] Hamming o(1) (3 + ε)-approximation, Fully deter-
ministic, nΩ(1/ε6) space.

[32] Hamming ≈ 3/c The paper makes no theoretical
claims on the exponent.

[148] Hamming 1.38/c Exponent 1/c when r = o(log n) or
(log n)/(cr) ∈N.

[146] `p O(d1−1/p/c) Sub-linear for `2 when c = ω(
√

d).

This paper Hamming,
`1, `2

1/c Actual exponent is 1−cr/d
c(1−r/d) which im-

proves to 1/(2c− 1) for cr ≈ d/2.

[148] Braun-
Blanquet

1.38 1−b1
1−b2

Via reduction to Hamming. Requires
sets of equal weight.

This paper Braun-
Blanquet

log 1/b1
log 1/b2

See [63] figure 2 for a comparison
with [148].

Table 3.1: Comparison of Las Vegas algorithms for high dimensional near neighbour
problems. The exponent is the value ρ, such that the data structure has query time
nρ+o(1). All listed algorithms, except for [91] use less than n2 space. All algorithms
give c-approximations, except for the first two, and for [91], which is a (3 + ε)-
approximation.

Tensoring means constructing a large space partition P ⊆ P(X) by taking multiple
smaller random partitions P1, P2, . . . and taking all the intersections P = {p1 ∩ p2, · · · |
p1 ∈ P1, p2 ∈ P2, . . . }. Often the implicit partition P is nearly as good as a fully
random partition of equal size, while it is cheaper to store in memory and allows
much faster lookups of which section covers a given point. In this paper we are
particularly interested in Pi’s that partition different small sub-spaces, such that P is
used to increase the dimension of a small, explicit, good partition.

Unfortunately tensoring doesn’t seem to be directly applicable for deterministic
constructions, since deterministic space partitions tend to have some overhead that
gets amplified by the product construction. This is the reason why [148] constructs
hash functions directly using algebraic methods, rather than starting with a small hash
function and ‘amplifying’ as is common for LSH. Algebraic methods are great when

46 Chapter 3. Optimal Las Vegas Locality Sensitive Data Structures

they exist, but they tend to be hard to find, and it would be a tough order to find them
for every similarity measure we would like to make a data structure for.

It turns out we can use splitters to help make tensoring work deterministically.
Roughly, these are generalizations of perfect hash functions. However, where a
(d, m, k)-perfect hash family guarantees that for any set S ⊆ [d] of size k, there is
a function π : [d] → [m] such that |π(S)| = k, a (d, m)-splitter instead guarantees
that the is some π such that |S ∩ π−1(i)| = d/m for each i = 1, . . . , m; or as close as
possible if m does not divide d. That is, for any S there is some π that ‘splits’ S evenly
between m buckets.

Using splitters with tensoring, we greatly limit the number of combinations of
smaller space partitions that are needed to guarantee covering. We use this to amplify
partitions found probabilistically and verified deterministically. The random aspect is
however only for convenience, since the greedy set cover algorithm would suffice as
well, as is done in [16]. We don’t quite get a general reduction from Monte Carlo to
Las Vegas LSH data structures, but we show how two state of the art algorithms may
be converted at a negligible overhead.

A final technique to make everything come together is the use of dimensionality
reductions. We can’t quite use the standard bit-sampling and Johnson–Lindenstrauss
lemmas, since those may (though unlikely) increase the distance between originally
near points. Instead we use two dimensionality reduction lemmas based on partition-
ing. Similarly to [148] and others, we fix a random permutation. Then given a vector
x ∈ {0, 1}d we permute the coordinates and partition into blocks x1, . . . , xd/B of size
B. For some linear distance function, dist(x, y) = dist(x1, y1) + · · ·+ dist(xd/B, yd/B),
which implies that for some i we must have dist(xi, yi) ≤ dist(x, y)B/d. Running the
algorithm separately for each set of blocks guarantee that we no pair gets mapped
too far away from each other, while the randomness of the permutation lets us apply
standard Chernoff bounds on how close the remaining points get.

Partitioning, however, doesn’t work well if distances are very small, cr << d. This
is because we need B = d

cr ε−2 log n to get the said Chernoff bounds on distances for
points at distance cr. We solve this problem by hashing coordinates into buckets of
≈ cr/ε and taking the xor of each bucket. This has the effect of increasing distances
and thereby allowing us to partition into blocks of size ≈ ε−3 log n. A similar technique
was used for dimensionality reduction in [113], but without deterministic guarantees.
The problem is tackled fully deterministically in [91] using codes, but with the slightly
worse bound of ε−4 log n.

For the second problem of Braun-Blanquet similarity we also need a way to reduce
the dimension to a manageble size. Using randomized reductions (for example
partitioning), we can reduce to |x ∩ y| ∼ log n without introducing too many false
positives. However we could easily have e.g. universe size d = (log n)100 and
|x| = |y| = (log n)2, which is much too high a dimension for our splitter technique to
work. There is probably no hope of actually reducing d, since increasing |x|/d and
|y|/d makes the problem we are trying to solve easier, and such a reduction would
thus break LSH lower bounds.

Instead we introduce tensoring technique based on perfect hash functions, which
allows us to create Turán Systems with very large universe sizes for very little overhead.

3.1. Introduction 47

In the process of showing our results, we show a useful bound on the ratio between
two binomial coefficients, which may be of separate interest.

3.1.4 Notation

We use [d] = {1, . . . , d} as convenient notation sets of a given size. Somewhat
overloading notation, for a predicate P, we also use the Iversonian notation [P] for a
value that is 1 if P is true and 0 otherwise.

For a set x ⊆ [d], we will sometimes think of it as a subset of the universe [d],
and at other times as a vector x ∈ {0, 1}d, where xi = 1 indicates that i ∈ x. This
correspondence goes further, and we may refer to the set size |x| or the vector norm
‖x‖, which is always the Hamming norm, ‖x‖ = ∑d

i=1 xi. Similarly for two sets or
points x, y ∈ {0, 1}d, we may refer to the inner product 〈x, y〉 = ∑d

i=1 xiyi or to the size
of their intersection |x ∩ y|.

We use S× T = {(s, t) : s ∈ S, t ∈ T} for the cross product, and x⊕ y for symmetric
difference (or ‘xor’). P(X) is the power set of X, such that x ⊆ X ≡ x ∈ P(X). (X

k)
denotes all subsets of X of size k.

For at set S ⊆ [d] and a vector x ∈ {0, 1}d, we let xS be the projection of x onto
S. This is an |S|-dimensional vector, consisting of the coordinates xS = 〈xi : i ∈ S〉 in
the natural order of i. For a function f : [a]→ [b] we let f−1 : P([b])→ P([a]) be the
‘pullback’ of f , such that f−1(S) = {i ∈ [a] | f (i) ∈ S}. For example, for x ∈ {0, 1}a,
we may write x f−1(1) to be the vector x projected onto the coordinates of f−1({1}).

Sometimes when a variable is ω(1) we may assume it is integral, when this is
achievable easily by rounding that only perturbs the result by an insignificant o(1)
amount.

The functional poly(a, b, . . .) means any polynomial combination of the arguments,
essentially the same set as (a · b . . .)±O(1).

3.1.5 Organization

We start by laying out the general framework shared between our algorithms. We
use a relatively common approach to modern near neighbour data structures, but the
overview also helps establish some notation used in the later sections.

The second part of section 3.2 describes the main ideas and intuition on how we
achieve our results. In particular it defines the concept of ‘splitters’ and how they
may be used to create list-decodable codes for various measures. The section finally
touches upon the issues we encounter on dimensionality reduction, which we can use
to an extent, but which is restricted by our requirement of ‘1-sided’ errors.

In sections 3.3 and 3.4 we prove the main theorems from the introduction. The
sections follow a similar pattern: First we introduce a filter family and prove its
existence, then we show a dimensionality reduction lemma and analyze the resulting
algorithm.

48 Chapter 3. Optimal Las Vegas Locality Sensitive Data Structures

3.2 Overview

Both algorithms in this paper follow the structure of the Locality Sensitive Filter
framework, which is as follows: For a given universe U, we define a family F of
‘filters’ equipped with a (possibly random) function F : U → P(F), which assigns
every point a set of filters.

Typically, F will be a generous covering of U, and F(x) will be the sets that cover
the point x. Critically, any pair x, y that is close/similar enough in U must share a filter,
such that F(X) ∩ F(Y) 6= ∅. Further we will want that pairs x, y that are sufficiently
far/dissimilar only rarely share a filter, such that E[|F(x) ∩ F(Y)|] is tiny.

To construct the data structure, we are given a set of data points P ⊆ U. We
compute F(x) for every x ∈ P and store the points in a (hash) map T : F → P(P). For
any point x ∈ P and filter f ∈ F(x), we store x ∈ T[f]. Note that the same x may be
stored in multiple different buckets.

To query the data structure with a point x ∈ U, we compute the distance/similarity
between x and every point y ∈ ⋃ f∈F(x) T[f], returning the first suitable candidate, if
any.

There are many possible variations of the scheme, such as sampling F from a
distribution of filter families. In case we want a data structure with space/time trade-
offs, we can use different F functions for data points and query points. However in
this article we will not include these extensions.

We note that while it is easy to delete and insert new points in the data structure
after creation, we are going to choose F parametrized on the total number of points,
|P|. This makes our data structure essentially static, but luckily [144] have found
general, deterministic reductions from dynamic to static data structures.

3.2.1 Intuition

The main challenge in this paper will be the construction of filter families F which
are: (i) not too large; (ii) have a F(·) function that is efficient to evaluate; and most
importantly, (iii) guarantee that all sufficiently close/similar points always share a
filter. The last requirement is what makes our algorithm different from previous
results, which only had this guarantee probabilistically.

For concreteness, let us consider the Hamming space problem. Observe that for
very low dimensional spaces, d = (1 + o(1)) log n, we can afford to spend exponential
time designing a filter family. In particular we can formulate a set cover problem,
in which we wish to cover each pair of points at distance ≤ r with Hamming balls
of radius s. This gives a family that is not much larger than what can be achieved
probabilistically, and which is guaranteed to work. Furthermore, this family has
sublinear size (no(1)), making F(x) efficient to evaluate, since we can simply enumerate
all of the Hamming balls and check if x is contained.

The challenge is to scale this approach up to general d.
Using a standard approach of randomly partitioning the coordinates, we can

reduce the dimension to (log n)1+ε. This is basically dimensionality reduction by bit
sampling, but it produces d/ log n different subspaces, such that for any pair x, y there
is at least one subspace in which their distance is not increased. We are left with a gap

3.2. Overview 49

from (log n)1+ε down to log n. Bridging this gap turns out to require a lot more work.
Intuitively we cannot hope to simply use a stronger dimensionality reduction, since
log n dimensions only just fit n points in Hamming space and would surely make too
many non-similar points collide to be effective.

A natural idea is to construct higher-dimensional filter families by combining
multiple smaller families. This is a common technique from the first list decodable
error correcting codes, for example [78]: Given a code C ⊆ {0, 1}d with covering radius
r, we can create a new code C2 ⊆ {0, 1}2d of size |C|2 with covering radius 2r by taking
every pair of code words and concatenating them. Then for a given point x ∈ {0, 1}2d

we can decode the first and last d coordinates of x = x1x2 separately in C. This returns
two code words c1, c2 such that dist(x1, c1) ≤ r and dist(x2, c2) ≤ r. By construction
c1c2 is in C2 and dist(x1x2, c1c2) ≤ 2r.

This combination idea is nice when it applies. When used with high quality inner
codes, the combined code is close to optimal as well. In most cases the properties
of C that we are interested in won’t decompose as nicely. With the example of our
Hamming ball filter family, consider x, y ∈ {0, 1}2d with distance dist(x, y) = r. If
we split x = x1x2 an y = y1y2 we could decode the smaller vectors individually in a
smaller family, however we don’t have any guarantee on dist(x1, y1) and dist(x2, y2)
individually, so the inner code might fail to return anything at all.

To solve this problem, we use a classic tool for creating combinatorial objects, such
as our filter families, called ‘splitters’. Originally introduced by [126, 136] they are
defined as follows:

Definition 8 (Splitter). A (B, l)-splitter H is a family of functions from {1, . . . , B} to
{1, . . . , l} such that for all S ⊆ {1, . . . , B}, there is a h ∈ H that splits S perfectly, i.e., into
equal-sized parts h−1(j) ∩ S, j = 1, 2, . . . , l. (or as equal as possible, if l does not divide |S|).

The size of H is at most Bl, and using either a generalization by [16] or a simple
combinatorial argument, it is possible to ensure that the size of each part |h−1(j)|
equals B/l (or as close as possible).

We now explain how splitters help us combine filter families. Let H be a splitter
from {1, . . . , 2d} to {1, 2}. For any x, y ∈ {0, 1}2d we can let S be the set of coordinates
on which x and y differ. Then there is a function h ∈ H such that |h−1(1) ∩ S| =
|h−1(2) ∩ S| = |S|/2. (Or as close as possible if |S| is odd.) If we repeat the failed
product combination from above for every h ∈ H we get a way to scale our family
from d to 2d dimensions, taking the size from |F | to (2d)2|F |2. That is, we only suffer
a small polynomial loss. In the end it turns out that the loss suffered from creating
filter families using this divide and conquer approach can be contained, thus solving
our problem.

An issue that comes up, is that the ‘property’ we are splitting (such as distance) can
often be a lot smaller than the dimensionality d of the points. In particular this original
dimensionality reduction may suffer an overhead factor d/|S|, which could make it
nearly useless if |S| is close to 1. To solve this problem, both of our algorithms employ
special half-deterministic dimensionality reductions, which ensures that the interesting
properties get ‘boosted’ and end up taking a reasonable amount of ‘space’. These
reductions are themselves not complicated, but they are somewhat non-standard, since
they can only have a one sided error. For example for Hamming distance we need

50 Chapter 3. Optimal Las Vegas Locality Sensitive Data Structures

that the mapped distance is never larger than its expected value, since otherwise we
could get false negatives.

For Hamming distance our dimension reduction works by hashing the coordinates
randomly from [d] to [m] taking the xor of the coordinates in each bucket. This is
related to the β-test in [113]. The idea is that if x and y are different in only a few
coordinates, then taking a small random group of coordinates, it is likely to contain at
most one where they differ. If no coordinates differ, then after taking the xor the result
will still be the same, but if exactly one (or an odd number) of coordinates differ, the
resulting coordinate will be different.

For set similarity things are a bit more hairy. There is no data independent
dimensionality reduction that can reduce the size of the domain. In fact this would
break the lower bounds of e.g. [63]. Instead we come up with a new construction
based on perfect hash functions, which greatly increases the number of filters needed,
but only as much as we can afford given the easier sub-problems.

The idea can be motivated as follows: Suppose you have to make a family of sets
T ⊆ P([n]) of size r, such that for each each set K ⊆ [n] of size |K| = k there is an
R ∈ T such that R ⊆ K. Then you might try to extend this to the domain [2n] as
follows: For each R ∈ T and each b ∈ {0, 1}r, make a new set R′ = {i + nbi : i ∈ R}
(where bi is padded appropriately). This creates 2r|T | new sets, which can be shown
to have the property, that for any set K ⊆ [2n] of size |K| = k, there is an R′ such that
R′ ⊆ K. That is as long as K ∩ (K− n) = ∅, since then we can consider R ∈ T such
that R ⊆ (K mod n). That is R is a subset of K ‘folded‘ into the first [n] elements, and
one of the R′ will be a subset of K.

Because of the requirement that |K mod n| = k we need to use perfect hashing as a
part of the construction. However for non-Las Vegas algorithms, a similar approach
may be useful, simply using random hashing.

3.3 Hamming Space Data Structure

We will give an efficient filter family for LSF in Hamming space. Afterwards we
will analyze it and choose the most optimal parameters, including dimensionality
reduction.

Lemma 3.3.1. For every choice of parameters B, b ∈ N, b ≤ B, 0 < r < B/2 and
s2 = O(B/

√
b), there exists a code C ⊆ {0, 1}B of size |C| = poly(BB/b) exp(s2

2(1−r/d))

with the following properties:

1. Given x ∈ {0, 1}B we can find a subset C(x) ⊆ {c ∈ C : dist(x, c) ≤ B/2− s
√

B/2}
in time |C(x)|+ poly(BB/b, es2b/B).

2. For all pairs x, y ∈ {0, 1}B with dist(x, y) ≤ r there is some common nearby code word
c ∈ C(x) ∩ C(y).

3. The code requires 4b poly(BB/b, es2b/B) time for preprocessing and poly(BB/b, es2b/B)
space.

3.3. Hamming Space Data Structure 51

Note that we don’t actually guarantee that our ‘list-decoding’ function C(x) returns
all nearby code words, just that it returns enough for property (2) which is what we
need for the data structure. This is however not intrinsic to the methods and using a
decoding algorithm similar to [43] would make it a ‘true’ list-decoding.

Proof. We first show how to construct a family for {0, 1}b, then how to enlarge it for
{0, 1}B. We then show that it has the covering property and finally the decoding
properties. In order for our probabilistic arguments to go through, we need the
following lemma, which follows from Stirling’s Approximation:

Lemma 3.3.2. For t = d
2 −

s
√

d
2 , 1 ≤ s ≤ d1/4/2 and r < d/2, Let x, y ∈ {0, 1}d be two

points at distance dist(x, y) = r, and let I = |{z ∈ {0, 1}d : dist(z, x) ≤ t, dist(z, y) ≤ t}|
be the size of the intersection of two hamming balls around x and y of radius t, then

7
8d

exp
(

−s2

2(1−r/d)

)
≤ I 2−d ≤ exp

(
−s2

2(1−r/d)

)
Proof is in the appendix.
Let s′ = s

√
b/B. Consider any two points x, y ∈ {0, 1}b with distance ≤ (r/d)b.

If we choose a ∈ {0, 1}b uniformly at random, by lemma 3.3.2 we have probability
p = poly(b) exp(−s′2

2(1−r/d)) that both x and y have distance at most t = b/2− s′
√

b/4

with c. By the union bound over pairs in {0, 1}b, if we sample p−1b log 2 independent
as, we get constant probability that some a works for every pair. We can verify that a
set A of such filters indeed works for every pair in time 4b|A|. By repeatedly sampling
sets A and verifying them, we get a working A in expected O(1) tries.1

Next we define C. We build a splitter, that is a set Π of functions π : [B]→ [B/b],
such that for every set I ⊆ [B] there is a π ∈ Π such that b|I|b/Bc ≤ |π−1(j) ∩ I| ≤
d|I|b/Be for j = 1, . . . , B/b. By the discussion after definition 8, such a set of size
poly(BB/b) exists and can be constructed in time and space proportional to its size.
Implicitly we can then define C by making one code word c ∈ {0, 1}B for every
π ∈ Π and 1 ≤ j1, . . . , jB/b ≤ |A|, satisfying the requirement that cπ−1(jk) = Ajk for
k = 1 . . . B/b. That is, for a given set of rows of A and a split of [B], we combine the
rows into one row c such that each row occupies a separate part of the split. Note
that this is possible, since splitter has all partitions of equal size, b. The created family
then has size |C| = |Π||A|B/b = poly(BB/b) exp(−s2

2(1−r/d)) as promised. Since the only
explicit work we had to do was finding A, we have property (3) of the lemma.

We define the decoding function C(x) ∈ C for x ∈ {0, 1}B with the following algo-
rithm: For each π ∈ Π compute the inner decodings Aj = {a ∈ A : dist(xπ−1(j), a) ≤
b/2− s

√
b/2} for j = 1, . . . , B/b. Return the set of all concatenations in the product

of the Aj’s: C(x) = {a1‖a2‖ . . . ‖aB/b : a1 ∈ A1, . . . }. Computing the Aj’s take time
(B/b)|A|, while computing and concatenating the product takes linear time in the size
of the output. This shows property (1).

Finally for property (2), consider a pair x, y ∈ {0, 1}B of distance ≤ r. Let I
be the set of coordinates on which x and y differ. Then there is a function π ∈

1The randomness is not essential, and we could as well formulate a set cover instance and solve it
using the greedy algorithm, which matches the probabilistic construction up to a log factor in size and
time.

52 Chapter 3. Optimal Las Vegas Locality Sensitive Data Structures

Π such that x and y differ in at most |I|b/B = rb/B coordinates in each subset
π−1(1), . . . , π−1(B/b) ⊆ [B]. Now for each pair of projected vectors xπ−1(1), yπ−1(1), . . .
(let’s call them x1, y1, . . .) there is an aj ∈ A such that dist(aj, xj) ≤ b/2− s′

√
b/2 and

dist(aj, yj) ≤ b/2− s′
√

b/2. This means that x and y must both have distance at most
(b/2− s′/2)B/b = B/2− s

√
B/2 to that c ∈ C which has cπ−1(j) = aj for j = 1 . . . B/b.

By the same reasoning, this c will be present in both C(x) and C(y), which proves the
lemma.

Returning to the problem of near neighbour search in {0, 1}d, it is clear from the
4b poly(BB/b) construction time of the above family, that it will not be efficient for
dimension B = (log n)ω(1). For this reason we will apply the following dimensionality
reduction lemma:

Lemma 3.3.3. Given d ≥ cr > r ≥ 1 and ε, δ > 0, define B = 27ε−3 log 1/δ and
m = 3cr/ε and assume δ−1 ≥ m, then there is a random set F of at most S = m/B functions
f : {0, 1}d → {0, 1}B with the following properties for every x, y ∈ {0, 1}d:

1. With probability 1, there is at least one f ∈ F st.:

dist(f (x), f (y)) ≤ dist(x, y)/S.

2. If dist(x, y) ≥ cr then for every f ∈ F with probability at least 1− δ:

dist(f (x), f (y)) ≥ (1− ε)cr/S.

The idea is to randomly throw the d coordinates in m = 3cr/ε buckets, (xor-ing the
value if more than two coordinates land in the same group.) For two points with ≤ cr
differences, this has the effect of rarely colliding two coordinates at which the points
disagree, thus preserving distances. It further has the effect of changing the relative
distances from arbitarily low r/d to something around ε, which allows partitioning
the coordinates into groups of around ε−3 log 1/δ coordinates using Chernoff bounds.

Proof. To prove lemma 3.3.3 first notice that if B ≥ d we can use the identity function
and we are done. If B ≥ m, then we can duplicate the vector dm/Be = O(ε−2 log 1/δ)
times. Also, by adjusting ε by a constant factor, we can assume that B divides m.

For the construction, pick a random function h : [d] → [m]. Define g : {0, 1}d →
{0, 1}m by ‘xor’ing the contents of each bucket, g(x)i =

⊕
j∈h−1(i) xj, and let fi(x) =

g(x)(iB,(i+1)B] for i = 0 . . . m/B be the set of functions in the lemma. We first show that
this set has property (1) and then property (2).

Observe that g never increases distances, since for any x, y ∈ {0, 1}d the distance

dist(g(x), g(y)) =
m

∑
i=1

 ⊕
j∈h−1(i)

xj 6=
⊕

j∈h−1(i)

yj


is just ∑m

i=1

(
∑j∈h−1(i)[xj 6= yj] mod 2

)
which is upper bounded by the number of

coordinates at which x and y differ. By averaging, there must be one fi such that
dist(fi(x), fi(x)) ≤ dist(g(x), g(y))B/m ≤ dist(x, y)/S.

3.3. Hamming Space Data Structure 53

For the second property, let R = dist(x, y) ≥ cr and let X1, . . . , Xm be the random
number of differences between x and y in each bucket under h. Let Y1, . . . , Ym be iid.
Poisson distributed variables with mean λ = E X1 = R/m ≥ ε/3. We use the the
Poisson trick from [131] theorem 5.7:

Pr[
B

∑
i=1

(Xi mod 2) < x] ≤ e
√

m Pr[
B

∑
i=1

(Yi mod 2) < x].

The probability Pr[Y mod 2 ≡ 1] that a Poisson random variable is odd is (G(1)−
G(−1))/2 where G(z) = ∑i Pr[Y = i]zi = eλ(z−1). This gives us the bound Pr[Yi mod
2 ≡ 1] = (1 − e−2λ)/2 ≥ (1 − e−2ε/3)/2 ≥ (1 − ε/3)ε/3. We can then bound
the probability of an fi decreasing distances too much, using a Chernoff bound
(Pr[Z ≤ x] ≤ exp(−D[x/B | p]B)):

Pr[dist(fi(x), fi(y)) ≤ (1− ε)cr/S]

≤ e
√

m exp(−D[(1− ε)ε/3 | (1− ε/3)ε/3]B)

≤ e
√

m exp(−2ε3B/27).

Since cr/S = crB/m = Bε/3. Here D[α | β] = α log α
β + (1 − α) log 1−α

1−β ≥ (α −
β)2/(2β) is the Kullback–Leibler divergence. For our choice of B the error probability
is then e

√
mδ2 which is less than δ by our assumptions. This proves the lemma.

Using lemma 3.3.3 we can make at most 3cr/ε = O(d/ε) data structures, as
described below, and be guaranteed that in one of them, we will find a near neighbour
at distance r′ = r/S = ε/(3c)B. In each data structure we will have to reduce the
distance cr′, at which we expect far points to appear, to cr′(1− ε). This ensures we
see at most a constant number of false positives in each data structure, which we can
easily filter out. For ε = o(1) this change be swallowed by the approximation factor c,
and won’t significantly impair our performance.

When using the filter family of lemma 3.3.1 for LSF, the time usage for queries and
inserting points is dominated by two parts: 1) The complexity of evaluating C(x), and
2) The expected number of points at distance larger than cr′(1− ε) that falls in the
same filter as x.

By randomly permuting and flipping the coordinates, we can assume that x is a
random point in {0, 1}d. The expected time to decode C(x) is then

E |C(x)|+ poly(BB/b, es2b/B)

= |C|Pr
x
[0 ∈ C(x)] + poly(BB/b, es2b/B)

≤ poly(BB/b, es2b/B) exp
(

s2

2(1−r′/B) −
s2

2

)
.

For estimating collisions with far points, we can similarly assume that x and y are
random points in {0, 1}d with fixed distance cr′(1− ε):

E |{y ∈ P : C(x) ∩ C(y) 6= ∅}|
≤ n |C| Pr

x,y
[0 ∈ C(x), 0 ∈ C(y)]

≤ BO(B/b) exp
(

s2

2(1−r′/B) −
s2

2(1−c(1−ε)r′/B) + log n
)

= BO(B/b) exp
(

s2

2 (
1

1−r′/B −
1

1−cr′/B + O(ε)) + log n
)

.

54 Chapter 3. Optimal Las Vegas Locality Sensitive Data Structures

Finally we should recall that constructing the data structures takes time 4b poly(es2b/B)
plus n inserts.

We now choose the parameters:

s2/2 = 1−cr′/B
cr′/B log n, B = 27ε−3 log n,

b = log4 n, ε = (log n)−1/4.

This makes the code construction time n1+o(1) while evaluating C(x) and looking at
far points takes expected time at most n1/c+Õ(log n)−1/4

. To use lemma 3.3.1 we have
to check that s2 = O(B/

√
b) = O((log n)5/4), but s2/2 = 1−ε/3

ε/3 log n = (log n)5/4(1−
o(1)) so everything works out. This shows theorem 9.

To get the result of corollary 4, we just need to substitute the dimensionality
reduction lemma 3.3.3 for a simple partitioning approach. (Lemma 3.3.4 below.) The
idea is that of [148] which is to randomly partition the d coordinates in B parts and
run the algorithm on those. The important point is that in this case r′/B = r/d, so the
relative distance is not decreased. We choose parameters

s2/2 = 1−cr/d
cr/d log n B = O(ε−2(cr/d)−1 log n),

b = log4 n, ε = (log n)−1/3.

This again makes this makes the code construction time n1+o(1) while evaluating C(x)

and looking at far points takes time n
1−cδ

c(1−δ)
+Õ(log n)−1/3d/r

as in the corollary. Again
we need need to check that s2 = O(B/

√
b) = O((log n)7/6). This works as long as

r/d = Ω((log n)−1/6), which is the assumption of the corollary.

Lemma 3.3.4. For any d ≥ r ≥ 1 and ε > 0 there is a set F of d/B functions, f : {0, 1}d →
{0, 1}B, where B = 2ε−2d/(cr) log n, such that:

1. With probability 1, there is at least one f ∈ F st.:

dist(f (x), f (y)) ≤ dist(x, y) B/d.

2. If dist(x, y) ≥ cr then for every f ∈ F with probability at least 1− 1/n:

dist(f (x), f (y)) ≥ (1− ε)cr B/d.

Proof. Fix a random permutation. Given x ∈ {0, 1}d, shuffle the coordinates using the
permutation. Let f1(x) be the first B coordinates of x, f2(x) the next B coordinates and
so forth. For any y ∈ {0, 1}d, after shuffling, the expected number of differences in
some block of B coordinates is dist(x, y)B/d. Then the first property follows because
∑i dist(fi(x), fi(y)) = dist(x, y) so not all distances can be below the expectation. The
second property follows from the Chernoff/Hoeffding bound [90].

3.4. Set Similarity Data Structure 55

3.4 Set Similarity Data Structure

We explore the generality of our methods, by making a Las Vegas version of another
very common LSH data structure. Recall the theorem we are trying to prove, from the
introduction:

Theorem 11. Given a set P of n subsets of [d], define the Braun-Blanquet similarity
sim(x, y) = |x ∩ y|/ max(|x|, |y|) on the elements of P. For every choice of 0 < b2 < b1 < 1
there is a data structure on P that supports the following query operation:

On input q ⊆ [d], for which there exists a set x ∈ P with sim(x, q) ≥ b1, return an x′ ∈ P
with sim(x′, q) > b2. The data structure uses expected time dnρ per query, can be constructed
in expected time dn1+ρ, and takes expected space n1+ρ + dn where ρ =

log 1/b1
log 1/b2

+ Ô(1/
√

log n).

By known reductions [63] we can focus on the case where all sets have the same
weight, w, which is known to the algorithm. This works by grouping sets in data
structures with sets of similar weight and uses no randomization. The price is only a

(log n)O(1) factor in time and space, which is dominated by the nÔ(1/
√

log n) factor in
the theorem.

When two sets have equal weight w, being b-close in Braun-Blanquet similarity
coresponds exactly to having an intersection of size bw. Hence for the data structure,
when trying to solve the (b1, b2)-approximate similarity search problem, we may
assume that the intersections between the query and the ‘close’ sets we are interested
in are at least b1w, while the intersections between the query and the ‘far’ sets we are
not interested in are at most b2w.

The structure of the algorithm follows the LSF framework as in the previous section.
A good filter family for set similarity turns out to be the r-element blocks of a Turán
system. This choice is inspired by [63] who sampled subsets with replacement.

Definition 9 ([178, 68]). A Turán (n, k, r)-system is a collection of r-element subsets, called
‘blocks’, of an n element set X such that every k element subset of X contains at least one of the
blocks.

Turán systems are well studied on their own, however all known general construc-
tions are either only existential or of suboptimal size. The following lemma provides
the first construction to tick both boxes, and with the added benefit of being efficiently
decodable.

An interesting difference between this section and the last, is that we don’t know
how to do a dimensionality reduction like we did for hamming distance. Instead we
are (luckily) able to make an efficiently decodable filter family even for very large
dimensional data points.

Lemma 3.4.1. For every n, k, r, where n > k > r3/2, there exists a Turán (n, k, r)-system,
T , of size |T | ≤ (n/k)r eχ where χ = O(

√
r log r + log k + log log n) with the following

properties:

1. Correctness: For every set K ⊆ [n] of size at least k, there is at least one block R ∈ T
such that R ⊆ K.

56 Chapter 3. Optimal Las Vegas Locality Sensitive Data Structures

2. Efficient decoding: Given a set S ⊆ [n], we can find all the blocks it contains T(S) =
{R ∈ T : R ⊆ S} in time |S||T(S)| + eχ. Furthermore, T(S) has expected size
≤ (|S|/k)reχ.

3. Efficient construction: The system is constructible, implicitly, in er(1+o(1)) time and
space.

Notes: A simple volume lower bound shows that an (n, k, r)-system must have
at least (n

r)/(
k
r) ≥ (n/k)r blocks, making our construction optimal up the factor eχ.

Using the sharper bound (n
r)/(

k
r) ≈ (n/k)r exp(r2

2k) from lemma 3.6.1, we get that the
factor exp(Ω(

√
r)) is indeed tight for k = O(r3/2).

The size of the system is in ‘expectation’, which is sufficient for our purposes, but
is in fact fairly easy to fix. On the other hand, the ‘expectation’ in the size of sets T(S)
seems harder to get rid of, which is the reason why the data strcuture is Las Vegas
and not deterministic.

3.4.1 The algorithm

We continue to describe the algorithm and proving theorem 10 using the lemma. The
proof of the lemma is at the end and will be the main difficulty of the section.

As discussed, by the reduction of [63] we can assume that all sets have weight w,
intersections with close sets have size ≥ b1w and intersections with far sets have size
≤ b2w. The data structure follows the LSF scheme as in the previous section. For
filters we use a Turán (d, b1w, log n

log 1/b2
) design, constructed by lemma 3.4.1. Note that if

b1w < (
log n

log 1/b2
)3/2 (k < r3/2 in the terms of the lemma), we can simply concatenate

the vectors with themselves O(log n) times. If b1w ≤ log n
log 1/b2

we can simply use all the

(d
b1w) sets of size b1w as a Turán (d, b1w, b1w) system and get a fast deterministic data

structure.
As in the previous section, given a dataset P of n subsets of [d], we build the data

structure by decoding each set in our filter system T . We store pointers from each
set R ∈ T to the elements of P in which they are a contained. By the lemma, this

takes time n(w(w/k)r + 1)eχ = wn(1/b1)
log n

log 1/b2 eχ ≤ dnρ, while expected space usage
is n(w/k)reχ + er(1+o(1)) + dn = nρ + dn as in the theorem. Building T takes time
er(1+o(1)) = n(1+o(1))/ log 1/b2 = n1+o(1).

Queries are likewise done by decoding the query set x in T and inspecting
each point y ∈ P for which there exists R ∈ T with R ⊆ y, until a point y′ with
sim(x, y′) > b2 is found. Let’s call this the candidate set of x. The expected number of
false positive points in the candidates is thus

∑
y∈P

E[|{R ∈ T : R ⊆ x ∩ y}|] = ∑
y∈P

E[|T(x ∩ y)|] ≤ n(b2w/(b1w))
log n

log 1/b2 eχ = nρ.

Computing the actual similarity takes time w, so this step takes time at most
wnρ ≤ dnρ . We also have to pay for actually decoding T(x), but that takes time

w(w/(b1w))
log n

log 1/b2 eχ + eχ ≤ dnρ as well.

3.4. Set Similarity Data Structure 57

Finally, to see that the algorithm is correct, if sim(x, y) ≥ b1 we have |x ∩ y| ≥ b1w,
and so by the Turán property of T there is R ∈ T such that R ⊆ x ∩ y which implies
R ⊆ x and R ⊆ y. This shows that there will always be at least one true high-similarity
set in the candidates, which proves theorem 10.

3.4.2 The proof of lemma 3.4.1

Proof. We first prove the lemma in four parts, starting with a small design and
making it larger step by step. To more easily describe the small designs, define
a = kr−3/2 log(r3/2) and b =

√
r. The steps are then

1. Making a (k2/(a2b), k/(ab), r/b) using brute force methods.

2. Use splitters to scale it to ((k/a)2, k/a, r).

3. Use perfect hashing to make it an (n/a, k/a, r) design.

4. Use partitioning to finally make an (n, k, r) design.

We first prove the lemma without worrying about the above values being intergers.
Then we’ll show that each value is close enough to some integer that we can hide any
excess due to approximation in the loss term.

The four steps can also be seen as proofs of the four inequalities:

T(n, k, r) ≤ (n
r)/(

k
r) (1 + log (n

k)),
T(cn, ck, cr) ≤ (cn

c) T(n, k, r)c,

T(ck2, k, r) ≤ (k4 log ck2)cr T(k2, k, r),
T(cn, ck, r) ≤ c T(n, k, r).

where the c are arbitrary integer constants > 0.

1. For convenience, define n′ = k2/(a2b), k′ = k/(ab), r′ = r/b and assume they
are all intergers. Probabilistically we can build a Turán (n′, k′, r′)-system, T (n′), by
sampling

` = (n′
r′)
/
(k′

r′)(1 + log (n′
k′)) ≤ (n′/k′)r′er′2/k′(1 + k′ log(en′/k′)) = (n′/k′)r′r5/2(1 + o(1))

independent size r′-sets. (Here we used the bound on (n′
r′)/(

k′
r′) from lemma 3.6.1 in

the appendix.) For any size k′ subset, K, the probability that it contains none of the

r′-sets is
(

1− (k′
r′)
/
(n′

r′)
)`
≤ e−1/(n′

k′). Hence by the union bound over all (n′
k′) K-sets,

there is constant probability that they all contain an r′-set, making our T (n′) a valid
system.

We can verify the correctness of a sampled system, naiively, by trying iterating over
all (n′

k′) K-sets, and for each one check if any of the R-sets is contained. This takes time
bounded by

(n′
k′)` ≤ (en′/k′)k′(n′/k′)r′r5/2(1 + o(1))

=
(

er3/2

log(r3/2)

) r
log(r3/2)

(
r2

log(r3/2)

)√r
rO(1)

= er+O(r/ log r)

58 Chapter 3. Optimal Las Vegas Locality Sensitive Data Structures

as in the preprocessing time promised by the lemma. Since we had constant success
probability, we can repeat the above steps an expected constant number of times to
get a correct system.

Notice that the system has a simple decoding algorithm of brute-force iterating
through all ` sets in T (n′).

2. To scale up the system, we proceed as in the previous section, by taking a splitter,
Π, that is a set of functions π : [bn′] → [b] such that for any set I ⊆ [bn′] there is a
π ∈ Π such that

b|I|/bc ≤ |π−1(j) ∩ I| ≤ d|I|/be for j = 1, . . . , b.

In other words, each π partitions [bn′] in b sets [bn′] = π−1(1) ∪ . . . π−1(b) and for
any subset I ⊆ [bn′] there is a partition which splits it as close to evenly as possible.
We discuss the constructions of such sets of functions in the appendix.

For each π ∈ Π, and distinct i1, . . . , ib ∈ [|T (n′)|], we make a br′-set, R ⊆ [bn′],
which we think of as an indicator vector ∈ {0, 1}bn′ , such that Rπ−1(j) = T (n′)

ij
for

j = 1 . . . b. That is, the new block, restricted to π−1(1), π−1(2), . . . , will be equal to the
i1th, i2th, . . . blocks of T (n′). Another way to think of this is that we take the i1th, i2th,
. . . blocks of T (n′) considered as binary vectors in {0, 1}n′ and combine them to a bn′

block ‘spreading’ them using π.
The new blocks taken together forms a family T (bn′) of size

|T (bn′)| = |Π||T (n′)|b = (bn′
b)[(n′/k′)r′rO(1)]b ≤ (en′)b(n′/k′)br′rO(b) = (n′/k′)br′rO(b),

where we used only the trivial bound (n
k) ≤ (en/k)k and the fact that n′ = rO(1).

We now show correctness of T (bn′). For this, consider any bk′-set K ⊆ [bn′]. We
need to show that there is some br′-set R ∈ T (bn′) such that R ⊆ K. By construction of
Π, there is some π ∈ Π such that |π−1(j) ∩ K| = k′ for all j = 1, . . . , b. Considering
K as an indicator vector, we look up Kπ−1(1), . . . , Kπ−1(b) in T (n′), which gives us b
disjoint r′-sets, R′1, . . . , R′b. By construction of T (bn′) there is a single R ∈ T (bn′) such
that Rπ−1(j) = R′j for all j. Now, since R′j ⊆ Kπ−1(j) for all j, we get R ⊆ K and so we

have proven T (bn′) to be a correct (bn′, bk′, br′)-system.
Decoding T is fast, since we only have to do |Π| · b lookups in (enumerations of)

T (n′). When evaluating T(bn′)(K) we make sure we return every br′-set in K. Hence
we return the entire “product” of unions:

T(bn′)(K) =
⋃

π∈Π

{R1 ∪ · · · ∪ Rb : R1 ∈ T(n′)(Kπ−1(1)), R2 ∈ . . . }.

In total this takes time |T(bn′)(K)| for the union product plus an overhead of
|Π|b|T (n′)| ≤ (en′)brO(r′+b) = rO(

√
r) for the individual decodings.

3. Next we convert our ((k/a)2, k/a, r) design, T (bn′) (note that bn′ = (k/a)2), to a
(n/a, k/a, r) design, call it T (n/a).

3.4. Set Similarity Data Structure 59

Let H be a perfect hash family of functions h : [n/a] → [(k/a)2], such that for
every k/a-set, S ⊆ [n/a], there is an h ∈ H such that |h(S)| = k/a. That is, no element
of S gets mapped to the same value. By lemma 3 in [16], we can efficiently construct
such a family of (k/a)4 log(n/a) functions.

We will first describe the decoding function T(n/a) : P([n/a])→ ([n/a]
k/a), and then

let T (n/a) = T(n/a)([n/a]). For any set S ⊆ [n/a] to be decoded, for each h ∈ H, we
evaluate T(bn′)(h(S)) to get all r-sets R ∈ T (bn′) where R ⊆ h(S). For each such set,
we return each set in

(h−1(R1) ∩ S)× (h−1(R2) ∩ S)× · · · × (h−1(Rr) ∩ S),

where Ri is the ith element of R when considered as a [bn′]r vector.
This takes time equal to the size of the above product (the number of results, |T(S)|)

plus an overhead of |H| times the time to decode in T (bn′) which is |H|rO(
√

r) = eχ by
the previous part. The other part of the decoding time, the actual size |Tbn′(h(S))|, is
dominated by the size of the product. To prove the the ‘efficient decoding’ part of the
lemma we thus have to show that the expected size of T(S) is ≤ (|S|a/k)reχ for any
S ⊆ [n/a]. (Note: this is for a set S ⊆ [n/a], part four of the proof will extend to sets
S ⊆ [n] and that factor a in the bound will disappear.)

At this point we will add a random permutation, π : [(k/a)2] → [(k/a)2], to the
preprocessing part of the lemma. This bit of randomness will allow us to consider the
perfect hash-family as ‘black box’ without worrying that it might conspire in a worst
case way with our fixed family T (bn′). We apply this permutation to each function of
H, so we are actually returning

T(n/a)(S) =
⋃{

(h−1(π−1R1) ∩ S)× (h−1(π−1R2) ∩ S)× · · · × (h−1(π−1Rr) ∩ S)

: for all R ∈ T(bn′)(πh(S)) and h ∈ H.

}

We can then show for any S ⊆ [n/a]:

Eπ[|T(n/a)(S)|] = Eπ

 ∑
h∈H, R∈T(bn′)(πh(S))

∣∣∣(h−1(π−1R1) ∩ S)× · · · × (h−1(π−1Rr) ∩ S)
∣∣∣


= ∑
h∈H, R∈T (bn′)

Eπ

[
|(h−1(π−1R1) ∩ S)| · · · |(h−1(π−1Rr) ∩ S)| · [R ⊆ πh(S)]

]
= |T (bn′)| ∑

h∈H
Eπ

[
|(h−1(π−1R1) ∩ S)| · · · |(h−1(π−1Rr) ∩ S)|

]
(3.1)

≤ |T (bn′)| ∑
h∈H

Eπ

[
|h−1(π1) ∩ S|

]r
(3.2)

= |T (bn′)| |H| (|S|/(k/a)2)r

= (|S|a/k)reχ.

For eq. (3.1) we used that

[R ⊆ h(S)] = [∀r∈Rr ∈ h(S)] = [∀r∈Rh−1(r) ∩ S 6= ∅] (3.3)

60 Chapter 3. Optimal Las Vegas Locality Sensitive Data Structures

and so the value in the expectation was already 0 exactly when the Iversonian bracket
was zero.

For eq. (3.2) we used the Maclaurin’s Inequality [44] which says that
E(X1X2 . . . Xr) ≤ (EX1)

r when the Xis are values sampled identically, uniformely
at random without replacement from som set of non-negative values. In our case
those values were sizes of partitions h−1(1) ∩ S, . . . , h−1(bn′) ∩ S, which allowed us to
bound the expectation as if h had been a random function.

We need to show that T(n/a) is a correct decoding function, that is T(n/a)(S) = {R ∈
T (n/a) : R ⊆ S}, and the correctness of T (n/a), that is |S| ≥ k/a implies T(n/a)(S) 6= ∅.

For this, first notice that T is monotone, that is if S ⊆ U then T(S) ⊆ T(U).
This follows because R ⊆ πh(S) =⇒ R ⊆ πh(U) and that each term h−1(Ri) ∩ S
is monotone in the size of S. This means we just need to show that T(K) returns
something for every |K| = k, since then T = T([n/a]) = T(

⋃
K K) ⊇ ⋃

T(K) will
return all these things.

Hence, consider a k-set, K ⊆ [n/a]. By the property of H, there must be some
h ∈ ≈H such that |h(K)| = k, and by correctness of T (bn′) we know there is some r-set,
R ∈ T(bn′)(h(K)). Now, for these h and R, since R ⊆ h(K) and using eq. (3.3) we have
that (h−1(R1)∩K)× . . . is non-empty, which is what we wanted. Conversely, consider
some R ∈ T (n/a) = T(n/a)([n/a]) such that R ⊆ K, then R ∈ h−1(R′1)× h−1(R′2) . . .
for some R′ ∈ T (bn′) and h(R) ⊆ h(K). However h(R) is exactly R′, since Ri ∈
h−1(R′i) =⇒ h(Ri) = R′i, which shows that T(n/a)(K) returns all the set we want.

4. Finally we convert our (n/a, k/a, r) design, T (n/a) to an (n, k, r) design, call it T .
We do this by choosing a random permutation π : [n]→ [n] and given any set S ⊆ [n]
we decode it as

T(S) = T(n/a)(πS ∩ {1, . . . , n/a}) ∪ · · · ∪ T(n/a)(πS ∩ {n− n/a + 1, . . . , n}).

To see that this is indded an (n, k, r) design, consider any set K ⊆ [n] of size
|K| = k, there must be one partition K ∩ {1 . . . , n/a}, . . . that has at least the average
size k/a. Since T (n/a) is a (n/a, k/a, r) design, it will contain a set R ⊆ K ∩ {in−
n/a + 1, . . . , in} ⊆ K which we return.

It remains to analyze the size of T(S), which may of course get large if we are so
unlucky that π places much more than the expected number of elements in one of the

3.5. Conclusion and Open Problems 61

partitions. In expectation this turns out to not be a problem, as we can see as follows:

Eπ|T(S)| = ∑
i

Eπ

[∣∣∣T(n/a)(πS ∩ pi)
∣∣∣]

= a ∑
s

E
[∣∣∣T(n/a)(πS ∩ p1)

∣∣∣ ∣∣ |πS ∩ p1| = s
]

Pr[|πS ∩ p1| = s]

= a ∑
s
(sa/k)reχ

(
|S|
s

)(
n− |S|
n/a− s

)/(
n

n/a

)

≤ eχ ∑
s

(s
r)

(k/a
r)

(|S|s)(
n−|S|
n/a−s)

(n
n/a)

= eχ (|S|r)

(k/a
r)(n

n/a)
∑

s

(
|S| − r
s− r

)(
n− |S|
n/a− s

)

= eχ
(|S|r)(

n−r
n/a−r)

(k/a
r)(n

n/a)
= eχ (

|S|
r)(

n/a
r)

(k/a
r)(n

r)

≤ eχ(|S|a/k)rer2/(k/a)a−r = (|S|/k)reχ.

Here we used Vandermonde convolution to complete the sum over s, and then
eventually lemma 3.6.1 to bound the binomial ratios. This completes the proof of
lemma 3.4.1.

3.4.3 Integrality considerations

In the proof, we needed the following quantities to be integral: b = r/b =
√

r,
a = kr−3/2 log(r3/2), k2/(a2b) = k/a = r3/2/ log(r3/2), k/(ab) = r/ log(r3/2), n/a.

It suffices to have
√

r and r/ log(r3/2) integral, and that the later divides k.
It is obviously ridiculous to require that r is a square number. Or is it? You can

actually make a number square by just changing it by a factor 1 + 2/
√

r. That would
only end up giving us an eO(

√
r), so maybe not so bad?

To make r/ log(r3/2) integral, we can multiply with a constant. Since it didn’t
matter that we divided by a log, surely it doesn’t matter that we multiply with a
constant.

To make r/ log(r3/2) divide k, we need k to have some divisors. We can’t just
round k to say, a power of two, since that could potentially change it by a constant
factor, which would come out of (n/k)r. We can change k with at most 1 + 1/

√
r. So

1 + 1/
√

k would be just fine. Of course we can change it by an additive r/ log(r3/2).
That corresponds to a factor about 1 + r/k. Since k > r3/2 that is fine! Or maybe we’ll
subtract that, because then it is still a valid (n, k, r) design. In the same way, if we
round r up to the nearest square root, we don’t have to make the changes in the later
calculations, but they can be kept intirely inside the lemma.

3.5 Conclusion and Open Problems

We have seen that, perhaps surprisingly, there exists a relatively general way of creating
efficient Las Vegas versions of state-of-the art high-dimensional search data structures.

62 Chapter 3. Optimal Las Vegas Locality Sensitive Data Structures

As bi-products we found efficient, explicit constructions of large Turán systems
and covering codes for pairs. We also showed an efficient way to do dimensionality
reduction in hamming space without false negatives.

The work leaves a number of open questions for further research:

1) Can we make a completely deterministic high-dimensional data structure for the
proposed problems? Cutting the number of random bits used for Las Vegas
guarantees would likewise be interesting. The presented algorithms both use
O(d log d) bits, but perhaps limited independence could be used to show that
O(log d) suffice?

2) Does there exist Las Vegas data structures with performance matching that of data-
dependent LSH data structures? This might connect to the previous question, since
a completely deterministic data structure would likely have to be data-dependent.
However the most direct approach would be to repeat [25], but find Las Vegas
constructions for the remaining uses of Monte Carlo randomness, such as clustering.

3) By reductions, our results extend to `2 and `1 with exponent n1/c. This is optimal
for `1, but for `2 we would hope to get n1/c2

. Can our techniques be applied to
yield such a data structure? Are there other interesting LSH algorithms that can be
made Las Vegas using our techniques? The author conjectures that a space/time
trade-off version of the presented algorithm should follow easily following the
approach of [25, 115, 61].

4) In the most general version, we we get the overhead term (log n)−1/4 in our ρ

value. Some previous known LSH data structures also had large terms, such as [20],
which had a (log n)−1/3 term and [25], which has (log log n)−Θ(1), but in general
most algorithms have at most a (log n)−1/2 term.

Can we improve the overhead of the approach given in this paper? Alternatively, is
there a completely different approach, that has a smaller overhead?

3.5.1 Acknowledgements

The author would like to thank Rasmus Pagh, Tobias Christiani and the members of the
Scalable Similarity Search project for many rewarding discussions on derandomization
and set similarity data structures. Further thanks to Omri Weinstein, Rasmus Pagh,
Martin Aumüller, Johan Sivertsen and the anonymous reviewers for useful comments
on the manuscript; and to the people at University of Texas, Austin, for hosting me
while doing much of this work. An extra thanks to Piotr Wygocki for pointing out the
need for a deterministic reduction from `1 to Hamming space.

The research leading to these results has received funding from the European
Research Council under the European Union’s 7th Framework Programme (FP7/2007-
2013) / ERC grant agreement no. 614331.

3.6. Appendix 63

3.6 Appendix

3.6.1 Explicit reduction from `1 to Hamming

Theorem 12. For d, r, c ≥ 1 and a set of points P ⊆ Rd of size |P| = n, there is a function
f : Rd → {0, 1}b where b = 2d2ε−3 log n, such that for any two points x ∈ Rd, y ∈ P,

1. if ‖x− y‖1 ≤ r then ‖ f (x)− f (y)‖1 ≤ (1 + ε)S,

2. if ‖x− y‖1 ≥ cr then ‖ f (x)− f (y)‖1 ≥ (1− ε)cS,

and the scale factor S = b/(2dcr) = (d log n)/(crε3).

Proof. First notice that we can assume all coordinates are at most rn. This can be
assured by imposing a grid of side length 2rn over the points of P, such that no point
is closer than distance r from a cell boundary. Since points x, y ∈ Rd in different cells
must now be more than distance r from each other, we can set the embedded distance
to cS by prefixing points from different cells with a different code word. The grid can
be easily found in time O(dn) by sweeping over each dimension seperately.

Notice that for actual data structure purposes, we can even just process each cell
seperately and don’t have to worry about separating them.

By splitting up each coordinate into positive and negative parts, we can further
assume each coordinate of each vector is positive. This costs a factor of 2 in d.

Next, if we have an 2εr/d grid, then there is always a grid point within `1-distance
εr. That means if we multiply each coordinate by d/(2εr) and round the coordinates
to nearest integer, we get distances are changed by at most εr.

We are now ready for the main trick of the reduction. Let M be the largest
coordinate, which we can assume is at most dn/ε, and R = dc/(2ε) be the value
of cr after scaling and rounding. For each coordinate we map [M] → [bM/Rc]R
by h(c) := 〈b x

Rc, b
x+1

R c, . . . , b x+R−1
R c〉. The point of this mapping is that for every

c1, c2 ∈ [M], dist(h(c1), h(c2)) = min(|c1 − c2|, R), where dist is hamming distance.

100 12 12 12 12 13 13 13 13

105 13 13 13 13 13 13 13 14

∗ ∗ ∗ ∗ ∗

Figure 3.1: Mapping 100 and 105 to [b100/8c]8 preserving `1 distance in Hamming
distance.

All that’s left is to use a code with good minimum and maximum distance to map
down into {0, 1}. A random code with bit length k = 4ε−2(log 4n) suffices. To see
this, let X be a binomial random variable, X ∼ B(k, 1/2). Then

Pr[(1− ε)k/2 ≤ C ≤ (1 + ε)k/2] ≤ 2e−ε2k/2 ≤ 1/(8n2)

64 Chapter 3. Optimal Las Vegas Locality Sensitive Data Structures

so by union bound over all (M/R
2) ≤ 2n2 pairs of values, we have constant probability

that the code works. For a given code, we can check this property deterministically
in time kn2, so we can use rejection sampling and generate the code in time ≈ O(n2).
Of course, n2 time may be too much. Luckily there are also explicit codes with the
property, such as those by Naor and Naor [135].

The complete construction follows by concatenating the result of h on all coordi-
nates.

See [94] for an explicit reduction from `2 to `1.

3.6.2 The Ratio of Two Binomial Coefficients

Classical bounds for the binomial coefficient: (n/k)k ≤ (n
k) ≤ (en/k)k give us simple

bounds for binomial ratios, when n ≥ m: (n/em)k ≤ (n
k)
/
(m

k) ≤ (en/m)k. The factor e
on both sides can often be a nuisance.

Luckily tighter analysis show, that they can nearly always be either removed
or reduced. Using the fact that n−i

m−i is increasing in i for n ≥ m, we can show

(n
k)
/
(m

k) = ∏k−1
i=0

n−i
m−i ≥ ∏k−1

i=0
n
m =

(n
m
)k. This is often sharp enough, but on the upper

bound side, we need to work harder to get results.
Let H(x) = x log 1/x + (1− x) log 1/(1− x) be the binary entropy function,

Lemma 3.6.1. For n ≥ m ≥ k ≥ 0 we have the following bounds:(n
m

)k
≤
(n

m

)k
exp

(
n−m

nm
k(k− 1)

2

)
≤
(

n
k

)/(
m
k

)
≤ exp (n H(k/n))

exp (m H(k/m))
≤
(n

m

)k
ek2/m

If m ≥ n we can simply flip the inequalities and swap n for m. Note that (n/em)k ≤
(n/m)k and ek2/m ≤ ek, so the bounds strictly tighten the simple bounds states above.

Especially the entropy bound is quite sharp, since we can also show: (n
k)
/
(m

k) ≥
exp((n+1)H(k/(n+1)))
exp((m+1)H(k/(m+1))) , though for very small values of k, the lower bound in the theorem
is actually even better. We can also get a feeling for the sharpness of the bounds, by
considering the series expansion of the entropy bound at k/m → 0: exp(n H(k/n))

exp(m H(k/m))
=(n

m
)k exp(n−m

nm
k2

2 + O(k3/m2)).
For the proofs, we’ll use some inequalities on the logarithmic function from [176]:

log(1 + x) ≥ x/(1 + x) (3.4)
log(1 + x) ≥ 2x/(2 + x) for x ≥ 0 (3.5)
log(1 + x) ≤ x(2 + x)/(2 + 2x) for x ≥ 0. (3.6)

In particular eq. (3.5) and eq. (3.6) imply the following bounds for the entropy function:

H(x) ≤ x log 1/x + x(2− x)/2 (3.7)
H(x) ≥ x log 1/x + 2x(1− x)/(2− x), (3.8)

which are quite good for small x.
We’ll prove theorem 3.6.1 one inequality at a time, starting from the left most:

3.6. Appendix 65

Proof. The first inequality follows simply from n−m
nm

k(k−1)
2 ≥ 0, which is clear from the

conditions on n ≥ m ≥ k.
The second inequality we prove by using eq. (3.4), which implies 1 + x ≥

exp(x/(1 + x)), to turn the product into a sum:(
n
k

)/(
m
k

)
=

k−1

∏
i=0

n− i
m− i

=
(n

m

)k k−1

∏
i=0

1− i/n
1− i/m

=
(n

m

)k k−1

∏
i=0

(
1 +

i/m− i/n
1− i/m

)

≥
(n

m

)k
exp

(
k−1

∑
i=0

i(n−m)

(n− i)m

)

≥
(n

m

)k
exp

(
k−1

∑
i=0

i
n−m

nm

)

=
(n

m

)k
exp

(
k(k− 1)

2
n−m

nm

)
.

For the entropy upper bound we will use an integration bound, integrating log(n−
i)/(m− i) by parts:(

n
k

)/(
m
k

)
=

k−1

∏
i=0

n− i
m− i

= exp

(
k−1

∑
i=0

log
n− i
m− i

)

≤ exp
(∫ k

0
1 log

n− x
m− x

dx
)

= exp

(
x log

n− x
m− x

∣∣∣∣k
0
−
∫ k

0
x
(

1
m− x

− 1
n− x

)
dx

)

= exp
(

k log
n− k
m− k

+
∫ k

0

(
m

m− x
− n

n− x

)
dx
)

= exp

(
k log

n− k
m− k

−
∣∣∣∣m log

1
m− x

− n log
1

n− x

∣∣∣∣k
0

)
= exp (n H(k/n)−m H(k/m)) .

The integral bound holds because log n−i
m−i is increasing in i, and so log n−i

m−i ≤∫ i+1
i log n−x

m−x dx. We see that n−i
m−i is increasing by observing n−i

m−i =
n
m + in/m−i

m−i where
the numerator and denominator of the last fraction are both positive. The entropy
lower bound, mentioned in the discussion after the theorem, follows similarly from
integration, using log n−i

m−i ≥
∫ i

i−1 log n−x
m−x dx.

66 Chapter 3. Optimal Las Vegas Locality Sensitive Data Structures

For the final upper bound, we use the bounds eq. (3.7) and eq. (3.8) on H(k/n) and
H(k/m) respectively:

exp (n H(k/n))
exp (m H(k/m))

≤
(n

m

)k
exp

(
k2

2

(
1

m− k/2
− 1

n

))
≤
(n

m

)k
exp

(
k2

m

)
.

3.6.3 Proof of lemma 3.3.2

d− r r

0

0

j

0

1

i

x

y

z

Figure 3.2: To calculate how many points are within distance t from two points x and
y, we consider without loss of generality x = 0 . . . 0. For a point, z, lying in the desired
region, we let i specify the number of 1’s where x and y differ, and j the number of 1’s
where they are equal. With this notation we get d(x, z) = i + j and d(y, z) = j + r− i.

j− i = t− r

j + i = t

i

r

r
2

0

j
0 t− r t− r

2
d−r

2
d− r

Figure 3.3: A contour plot over the two dimensional binomial. The pentagon on the
left marks the region over which we want to sum. For the upper bound we sum i from
0 to r and j from 0 to t− r/2.

Proof. From figure 3.2 we have that I = ∑ i+j≤t
j−i≤t−r

(r
i)(

d−r
j), and from monotonicity (and

figure 3.3) it is clear that (r
r/2)(

d−r
t−r/2) ≤ I ≤ ∑ 0≤i≤r

0≤j≤t−r/2
(r

i)(
d−r

j).

3.6. Appendix 67

We expand the binomials using Stirling’s approximation: exp(nH(k/n))√
8(1−k/n)k

≤ (n
k) ≤

∑i≤k (
n
i) ≤ exp(nH(k/n)) where H(x) = x log 1

x +(1− x) log 1
1−x is the binary entropy

function, which we bound as log 2− 2(1
2 − x)2− 4(1

2 − x)4 ≤ H(x) ≤ log 2− 2(1
2 − x)2.

We then have for the upper bound:

I2−d ≤ 2r−d exp
[
(d− r)H

(
t−r/2
d−r

)]
≤ exp

[
− s2

2(1−r/d)

]
And for the lower bound:

I2−d ≥ 2−d
(

r
r/2

)(
d− r

t− r/2

)
≥ 2r−d
√

2r

exp
[
(d− r)H

(
t−r/2
d−r − log 2

)]
√

8(1− t−r/2
d−r)(t− r/2)

≥ exp[− s2

2(1−r/d)]
exp[− s4

4(1−r/d)3d]√
4r(d− r)(1− ds2

(d−r)2)

≥ exp[− s2

2(1−r/d)]
1
d

1− 2s4/d√
1− 4s2/d

,

where for the last inequality we used the bound ex ≥ 1+ x. The last factor is monotone

in s and we see that for s ≤ d1/4/2 it is ≥ 7
8

(
1− 1/

√
d
)−1/2

≥ 7
8 , which gives the

theorem.

The factor of 1/d can be sharpened a bit, e.g. by using the two dimensional
Berry-Essen theorem from [45].

Chapter 4

Parameter-free Locality Sensitive Hashing for
Spherical Range Reporting
Originally published in: Proceedings of Symposium on Discrete Algorithms, SODA 2017

Joint work with: Rasmus Pagh, Martin Aumüller

4.1 Introduction

Range search is a central problem in computational geometry, see e.g. the survey [7].
Given a set S of n points in Rd, the task is to build a data structure that answers
queries of the following type: For a region R (from a predefined class of regions),
count or report all points from S that belong to R. Examples for such classes of regions
are simplices [127], halfspaces [54], and spheres [33].

In this paper we study the spherical range reporting (SRR) problem: Given a distance
parameter r and a point set S, build a data structure that supports the following queries:
Given a point q, report all points in S within distance r from q. This problem is closely
related to spherical range counting (“return the number of points”) and spherical range
emptiness (“decide whether there is a point at distance at most r”). Solving spherical
range searching problems in time that is truly sublinear in the point set size n = |S|
seems to require space exponential in the dimensionality of the point set S. This
phenomenon is an instance of the curse of dimensionality, and is supported by popular
algorithmic hardness conjectures (see [15, 186]).

For this reason, most algorithms for range searching problems involve approx-
imation of distances: For some approximation parameter c > 1 we allow the data
structure to only distinguish between distance ≤ r and > cr, while points at distance
in between can either be reported or not. We refer to this relaxation as c-approximate
SRR. Approximate range reporting and counting problems were considered by Arya
et al. in [33], by Indyk in his Ph.D. thesis [92] as “enumerating/counting point loca-
tions in equal balls” and by Andoni in his Ph.D. thesis [17] as “randomized R-near
neighbor reporting”. In low dimensions, tree-based approaches allow us to build
efficient data structures with space usage Õ(nγd−1(1 + (c− 1)γ2)) and query time
Õ(1/((c− 1)γ)d−1) for an approximation factor 1 < c ≤ 2 and trade-off parameter
γ ∈ [1, 1/(c− 1)], see [33]. The exponential dependency of time and/or space on the
dimension makes these algorithms inefficient in high dimensions.

70 Chapter 4. Parameter-free Locality Sensitive Hashing for Spherical Range Reporting

Our approach uses the locality-sensitive hashing (LSH) framework [96], which hashes
points into some smaller space such that close points are more likely to hash to the
same value than distant points. We will introduce in Section 4.2. Using this technique
to solve SRR is not new: Both Indyk [92] and Andoni [17] described extensions of
the general LSH framework to solve this problem. As we will show, their approaches
yield running times of Ω(tnρ), where t is the number of elements at distance at most
cr from the query, and ρ ∈ (0, 1) is a parameter that depends on the distance r, the
approximation factor c, and the LSH family used to build the data structure. When
the output size t is large this leads to running time Ω(n1+ρ), which is worse than
a linear scan! Indyk [92] also describes a reduction from spherical range counting
to the (c, r)-approximate near neighbor problem that asks to report a single point
from the result set of c-approximate SRR. The reduction uses O(log2 n/(c − 1)3)
queries of independently built (c, r)-ANN data structures, giving a running time of
O(nρ log2 n/(c− 1)3). Building upon Indyk’s technique, Chazelle et al. [54] proposed
a data structure that solves approximate halfspace range queries on the unit sphere by
applying a dimension reduction technique to Hamming space. All of these algorithms
use a standard LSH index data structure in a black-box fashion. We propose a data
structure that is almost similar to a standard LSH data structure, but query it in an
adaptive way. Our guarantees are probabilistic in the sense that each close point is
present in the output with constant probability.

Using LSH-based indexes for range reporting means that we report each point
closer than distance r with a certain probability, as well as some fraction of the points
with distance in the range (r, cr). When c is large, this can have negative consequences
for performance: a query could report nearly every point in the data set, and any
performance gained from approximation is lost. When the approximation factor c
is chosen close to 1, data structures working in high dimensions usually need many
independent repetitions to find points at distance r. This is another issue with such
indexes that makes range reporting hard: very close points show up in every repetition,
and we need to remove these duplicates.

A natural approach to overcome the difficulties mentioned above is to choose the
approximation factor c such that the cost of duplicated points roughly equals the
cost of dealing with far points. For LSH-based algorithms, many papers explain an
offline approach of finding the “optimal” value of c for a data set [19, 41, 76, 171]
which usually involves sampling, or making assumptions on the data distribution.
However, the best value of c depends not only on the data set, but also on the query.
This situation is depicted in Figure 4.1. In this paper, we provide a query algorithm
that adapts to the input and finds a near-optimal c at query time. We manage to do
this in time proportional to the number of points eventually returned for the optimal
parameters, making the search essentially free.

Output-sensitivity. To illustrate the improvement over standard fixed parameter
LSH, we propose hard data sets for spherical range reporting. In these data sets,
we pick t− 1 very close points that show up in almost every repetition, one point
at distance r, and the remaining points close to distance cr. In this case LSH would
need Θ(nρ) repetitions to retrieve the point at distance r with constant probability,

4.1. Introduction 71

Figure 4.1: Three queries at radius r centered around points q1, q2, and q3. The dashed
circles around the queries contain about twice as many points as the inner solid circles.
The ratios between the two radii are called c1, c2, and c3, respectively. Note that the
ratios are different across queries on the same dataset. This means that the running
time to answer these queries can differ because larger c values allow faster query
times.

Naïve LSH
Single-probe (Thm. 14)
Multi-probe (Thm. 17)
Lower Bound

Linear Scan

n0.2

n0.6

nρ

nn0.8n0.6n0.4

n0.8

n1.0

n1.2

n1.4

Output size t

Query time W

0

...

Figure 4.2: Overview of the running time guarantees of the proposed algorithms
“Adaptive Single-probe” and “Adaptive Multi-probe” for collision probabilities p1 =
0.8 and p2 = 0.6 in d-dimensional Hamming space such that ρ ≈ 0.436. The x-axis
shows the output size t as a function of n, the y-axis shows the expected work W,
i.e., the expected number of points the algorithm retrieves from the hash tables. For
comparison, we plotted the target time of O(nρ + t), the running time O(tnρ) of a
naive LSH approach, and the running time O(n) of a linear scan.

where e.g. ρ = 1/c in Hamming space [96] and ρ = 1/c2 in Euclidean space [20]. This
means that the algorithm considers Θ(tnρ) candidate points, which could be as large
as Θ(n1+ρ) for large t. In Section 4.5 we describe and analyze two algorithms Adaptive
Single-probe and Adaptive Multi-probe that mitigate this problem. The basic idea is that
these algorithms “notice” the presence of many close points, and respond by choosing
c more lenient, allowing for t far points being reported per repetition in addition to
the t close points. This in turn allows us to do only Θ((n/t)ρ) repetitions, for a total
candidate set of size Θ(t(n/t)ρ), which is never larger than n. In general, the number

72 Chapter 4. Parameter-free Locality Sensitive Hashing for Spherical Range Reporting

of points between distance r and cr have a linear influence on these running times.
This is made precise in Section 4.4.

Multi-probing. When we stick to the LSH framework, the best running time we
could hope for is Θ(nρ + t), giving the optimal output sensitive running time achiev-
able by (data independent) LSH. In order to get closer to this bound, we analyze
the multi-probing approach for LSH data structures, introduced in [151] and further
developed in [125]. The idea is that LSH partitions the space in many buckets, but
usually only examines the exact bucket in which the query point falls in each repetition.
Multi-probing considers all buckets “sufficiently correlated” with the query bucket to
increase the likelihood of finding close points. To our knowledge, multi-probing has
always been applied in order to save space by allowing a smaller number of repetitions
to be made and trading this for an increase in query time. Our motivation is different:
We want to take advantage of the fact that each of the very close points can only be
in one bucket per repetition. Hence by probing multiple buckets in each repetition,
we not only save memory, but also gain a large improvement in the dependency on t in our
running time. We do this by generalizing the adaptive single-probe algorithm to not
only find the optimal c for a query, but also the optimal number of buckets to probe.
As we show in Section 4.5, we are able to do this in time negligible compared to the
size of the final candidate set, making it practically free. The algorithm works for
any probing sequence supplied by the user, but in Section 4.6 we provide a novel
probing sequence for Hamming space and show that it strictly improves the query
time compared to the non-multi-probing variant. For large values of t, we show that
the running time matches the target time O(nρ + t). An overview of the exact running
time statements of the algorithms proposed here with a comparison to standard LSH,
a linear scan, and the optimal running time for LSH-based algorithms is depicted in
Figure 4.2.

Techniques. The proposed data structure is very similar to a standard LSH data
structure as described in [96]. In such a data structure, k locality-sensitive hash
functions are concatenated to increase the gap between the collision probability of
“close” points and “far away” points. A certain concatenation length k is fixed according
to the number of points in the data set, the approximation factor c, and the strength of
the hash family at hand. From the value k and the hash family one can compute how
many repetitions (using independent hash functions) have to be made to guarantee
that a close point is found with, say, constant probability. We give a detailed review
of this approach in Section 4.2. Instead of building the data structure for only one
particular k, we build a multi-level variant that encompasses all lengths 1, . . . , k at
the same time. At query time, we do an efficient search over the parameter space to
find the provably best level. The algorithm then retrieves only the candidates from
this level and filters far away points and duplicates. The reason we are able to do
an efficient search over the parameter space is that certain parts of the output size
can be estimated very quickly when storing the size of the hash table buckets in the
LSH data structure. For example, when considering very large c, though the output
may be large, there are only few repetitions to check. Gradually decreasing c, which
technically means increasing the length k in the LSH data structure, we will eventually

4.2. Preliminaries 73

have to check so many repetitions that the mere task of iterating through them would
be more work than scanning through the smallest candidate set found so far. Since
the number of repetitions for each value of c grows geometrically, it ends up being
bounded by the last check, which has size not larger than the returned candidate set.
For multi-probing it turns out that a similar strategy works, but the search problem is
now two-dimensional.

Additional Related Work. Our approach to query-sensitivity generalizes and ex-
tends the recent work of Har-Peled and Mahabadi [89] which considers approximate
near neighbors. Our method applies to every space and metric supported by the LSH
framework while [89] is presented for Hamming space.

The proposed single-probing algorithm can be thought of as an adaptive query
algorithm on the trie-based LSH forest introduced by Bawa et al. in [41] for the
related approximate k-nearest neighbor problem. The authors of [41] make significant
assumptions on the distance distribution of approximate nearest neighbors. The
algorithm proposed in [41] always looks at all n f (c) repetitions where f (c) depends
on the largest distance r supported by the algorithm and the approximation factor.
It collects points traversing tries synchronously in a bottom-up fashion. By looking
closer at the guarantees of LSH functions, we show that one can gradually increase
the number of repetitions to look at and find the best level to query directly. We hope
that the insights provided here will shed new light on solving approximate nearest
neighbors beyond using standard reductions as in [88]. We note that very recent work
of Andoni et al. [30] provides new guarantees for LSH forest in worst case settings —
it would be interesting to see if this could lead to improvements of our results.

Combining results of very recent papers [115, 61, 24] on space/time-tradeoffs
makes it possible to achieve running times that are asymptotically similar to our
results with respect to multi-probing. We give a detailed exposition in Appendix 4.8.5.

4.2 Preliminaries

Our data structures can be implemented in a standard model of computation that
allows unit cost retrieval of a memory word. For simplicity we will assume that hash
function evaluation as well as distance computation can also be done in unit time —
results in more general settings follows by reduction.

Let (X, dist) be a metric space over X with distance function dist : X2 → R. In
this paper, the space usually does not matter; only the multi-probing sequence in
Section 4.6 is tied to Hamming space.

Definition 10 (Spherical Range Reporting). Given a set of points S ⊆ X and a number
r ≥ 0, construct a data structure that supports the following queries: Given a point q ∈ X,
report each point p ∈ S with dist(p, q) ≤ r with constant probability.

Note that we consider the exact version of SRR, where distances are not ap-
proximated, but allow point-wise probabilistic guarantees. Of course, repeating an
algorithm that solves SRR Θ(log |S|) times yields an algorithm that outputs each close
point with high probability.

74 Chapter 4. Parameter-free Locality Sensitive Hashing for Spherical Range Reporting

Definition 11 (LSH Family, [52]). A locality-sensitive hash (LSH) family H is family
of functions h : X → R, such that for each pair x, y ∈ X and a random h ∈ H, for arbitrary
q ∈ X, whenever dist(q, x) ≤ dist(q, y) we have Pr[h(q) = h(x)] ≥ Pr[h(q) = h(y)].

Usually the set R is small, like the set {0, 1}. Often we will concatenate multiple
independent hash functions from a family, getting functions hk : X → Rk. We call this
a hash function at level k.

Having access to an LSH family H allows us to build a data structure with the
following properties.

Theorem 13 ([88, Theorem 3.4]). Suppose that for some metric space (X, dist) and some
factor c > 1, there exists an LSH family such that Pr[h(q) = h(x)] ≥ p1 when dist(q, x) ≤ r
and Pr[h(q) = h(x)] ≤ p2 when dist(q, x) ≥ cr with p1 > p2. Then there exists a data
structure such that for a given query q, it returns with constant probability a point within
distance cr, if there exists a point within distance r. The algorithm uses O(dn + n1+ρ) space
and evaluates O(nρ) hash functions per query, where ρ =

log(1/p1)
log(1/p2)

.

It is essential for understanding our algorithms to know how the above data
structure works. For the convenience of the reader we provide a description of the
proof next.

Proof. Given access to an LSH family H with the properties stated in the theorem
and two parameters L and k (to be specified below), repeat the following pro-
cess independently for each i in {1, . . . , L}: Choose k hash functions gi,1, . . . , gi,k
independently at random from H. For each point p ∈ S, we view the sequence
hi(p) = (gi,1(p), . . . , gi,k(p)) ∈ Rk as the hash code of p, identify this hash code with a
bucket in a table, and store a reference to p in bucket hi(p). To avoid storing empty
buckets from Rk, we resort to hashing and build a hash table Ti to store the non-empty
buckets for S and hi.

Given a query q ∈ X, we retrieve all points from the buckets h1(q), . . . , hL(q) in
tables T1, . . . , TL, respectively, and report a close point in distance at most cr as soon
as we find such a point. Note that the algorithm stops and reports that no close points
exists after retrieving more than 3L points, which is crucial to guarantee query time
O(nρ).

The parameters k and L are set according to the following reasoning. First, set k
such that it is expected that at most one distant point at distance at least cr collides
with the query in one of the repetitions. This means that we require npk

2 ≤ 1 and hence
we define k = d log n

log(1/p2)
e. To find a close point at distance at most r with probability

at least 1− δ, the number of repetitions L must satisfy δ ≤ (1− pk
1)

L ≤ exp(−pk
1 · L).

This means that L should be at least p−k
1 ln δ and simplifying yields L = O(nρ). Note

that these parameters are set to work even in a worst-case scenario where there is
exactly one point at distance p and all other points have distance slightly larger than
cr.

For ease of presentation, we assume that the collision probability p1 is Θ(1)
throughout the paper.

The LSH framework can easily be extended to solve SRR. We just report all the
points that are in distance at most r from the query point in the whole candidate

4.3. Data Structure 75

set retrieved from all tables T1, . . . , TL [17]. For the remainder of this paper, we will
denote the number of points retrieved in this way by W (“work”). It is easy to see
that this change to the query algorithm would already solve SRR with the guarantees
stated in the problem definition. However, we will see in Section 4.4 that its running
time might be as large as O(n1+ρ), worse than a linear scan over the data set.

4.3 Data Structure

We extend a standard LSH data structure in the following way.
Assume we are given a set S ⊆ X of n points, two parameters r and L, and access

to an LSH family H that maps from X to R. Let reps(k) = dp−k
1 e where p1 is a

lower bound on the probability that points at distance r collide under random choice
of h ∈ H. Let K be the largest integer such that reps(K) ≤ L. A Multi-level LSH
data structure for S is set up in the following way: For each k ∈ {0, . . . , K} choose
functions gk,i for 1 ≤ i ≤ reps(k) from H independently at random. Then, for each
k ∈ {0, . . . , K}, build reps(k) hash tables Tk,i with 1 ≤ i ≤ reps(k). For a fixed pair
k ∈ {0, . . . , K} and i ∈ {1, . . . , reps(k)}, and each x ∈ X, concatenate hash values
(g1,i(x), . . . , gk,i(x)) ∈ Rk to obtain the hash code hk,i(x). Store references to all points
in S in table Tk,i by applying hk,i(x). For a point x ∈ X, and for integers 0 ≤ k ≤ K
and 1 ≤ i ≤ reps(k), we let |Tk,i(x)| be the number of points in bucket hk,i(x) in
table Tk,i. We store this value so it can be retrieved in constant time. In contrast to
a standard LSH data structure, we only accept the number of repetitions, i.e., the
allowed space to build the data structure, as an additional parameter. The value K is
chosen such that the number of repetitions available suffices to obtain a close point
at distance r with constant probability, cf. the proof of Theorem 13. This is ensured
by the repetition count for all levels 0, . . . , K. The space usage of our data structure
is O(n ∑0≤k≤K p−k

1) = O(np−K
1) = O(nL). Hence multiple levels only add a constant

overhead to the space consumption compared to a standard LSH data structure for
level K. Figure 4.3 provides a visualization of the data structure.

We describe an alternative tree-based data structure that trades query time for
space consumption in Appendix 4.8.1.

4.4 Standard LSH, Local Expansion, and Probing the Right Level

In this section we show that using a standard LSH approach can yield running time
Ω(tnρ) when standard parameter settings such as the ones in the proof of Theorem 13
are used to solve SRR. Then, we define a measure for the difficulty of a query. Finally,
we show that if the output size and this measure is known, inspecting a certain level in
the multi-level LSH data structure gives output- and query-sensitive expected running
times.

Suppose we want to solve SRR using an LSH family H. Assume that the query
point q ∈ X is fixed. Given n, t with 1 ≤ t ≤ n, and c > 1, we generate a data set S by
picking

76 Chapter 4. Parameter-free Locality Sensitive Hashing for Spherical Range Reporting

· · · · · ·

TK,i

Point set Sh0,1

h1,1

h1,2

hK,i

...

T0,1

T1,1 T1,2

T2,1 T2,2 T2,3 T2,4

Level

0

1

2

...

K

Rep.

p−0

p−1

p−2

p−K

... . . .

TK,1 TK,2 TK,3 TK,4 TK,5 TK,p−K

Figure 4.3: Overview of the multi-level LSH data structure with tables Tk,i and hash
functions hk,i splitting a data set S. The data structure is set up for levels 0, ..., K
with repetition count “Rep.” for collision probability p = 1/2. Example for a space
partition of S induced by hash function hK,i is explicitly depicted as the content of
table TK,i where each class is a bucket.

• t− 1 points at distance ε from q, for ε small enough that even concatenating
d log n

log 1/p2
e hash functions from H, we still have collision probability higher than

0.01,

• one point x ∈ X with dist(q, x) = r,

• the remaining n− t points at distance cr.

We call a set S that is generated by the process described above a t-heavy input for SRR
on q. By definition, a t-heavy input has expansion c at query point q. We argue that
the standard LSH approach is unnecessarily slow on such inputs.

Observation 1. Fix two values n and t ≤ n, and let q ∈ X be a fixed query point. Let S with
|S| = n be a t-heavy input generated by the process above. Suppose we want to solve SRR in
(X, dist) using the LSH data structure from the proof of Theorem 13 with LSH family H build
for S. Then the expected number of points retrieved from the hash tables on query q in the LSH
data structure is Θ(tnρ).

Proof. The standard LSH data structure is set up with k = d log n
log 1/p2

e and L = O(nρ). L
repetitions are necessary to find the close point at distance r with constant probability.
By the construction of S, each repetition will contribute at least Θ(t) very close points
in expectation. So, we expect to retrieve O(tnρ) close points from the hash tables in
total.

The process described above assumes that the space allows us to pick sufficiently
many points at a certain distance. This is for example true in Rd with Euclidean

4.4. Standard LSH, Local Expansion, and Probing the Right Level 77

distance. In Hamming space {0, 1}d we would change the above process to enumerate
the points from distance 1, 2, . . . and distance cr+ 1, cr+ 2, If d and r are sufficiently
large, the same observation as above also holds for inputs generated according to this
process.

For a set S of points, a point q, and a number r > 0, let Nr(q) be the number of
points in S at distance at most r from q. We next define the expansion at a query point
q for a given distance. The expansion measures how far we can increase the radius of
an r-sphere around the query point before the number of points before the number
of points covered more than doubles. This dimensionality measure is central in the
running time analysis of our proposed algorithms.

Definition 12 (Expansion). Let r > 0, q ∈ X and S ⊆ X be a set of points. The expansion
c∗q,r at point q is the largest number c such that Ncr(q) ≤ 2Nr(q), where c∗q,r is ∞ if Nr(q) ≥
n/2.

We will often simply write c∗q , when r is known in the context. A visualization for
the expansion around a query is shown in Figure 4.1.

4.4.1 Query Algorithms If t and c∗q are Known

In the following, we state the parameter ρ as used in Theorem 13 as a function ρ(r, c)
such that ρ(r, c) = log(1/p(r))

log(1/p(cr)) , where p(∆) is the probability that two points at distance
∆ collide. (The probability is over the random choice of the LSH function.) We omit
the parameters when their value is clear from the context. The following statements
use the Multi-Level LSH data structure introduced in Section 4.2.

Theorem 14. Let r > 0 and c ≥ 1. Let S be a set of n points and let DS be the Multi-level
LSH data structure for S using L = Ω(nρ(r,c)). Given a query point q, let t = Nr(q) and c∗q
be the expansion around q in S. Then there exists a query algorithm on DS to solve SRR with
the following properties:

(i) If c∗q ≥ c, the algorithm has expected running time O(t(n/t)ρ(r,c∗q)).

(ii) Otherwise, the algorithm has expected running time O(t(n/t)ρ(r,c) + Ncr(q)).

For t = 0, the running time is the same as t = 1.

Proof. Let p1 and p2 be the probabilities that the query point collides with points at
distance r and c∗qr, respectively, given the LSH family used. We consider statement

(i) first. Set k = d log(n/t)
log(1/p2)

e and note that pk
2 ≤ t/n and p−k

1 = Θ((n/t)ρ(r,c∗q)). The
algorithm works by inspecting all points in the query buckets in tables Tk,1, . . . , Tk,p−k

1
.

This repetition count guarantees constant probability of finding each close point and
since c∗q ≥ c, we can assume p−k

1 ≤ L. In each repetition, we expect collisions with not
more than t close points, Nc∗q r(q)pk

1 points at distance at most c∗qr and npk
2 far points.

By linearity of expectation, the expected number of collisions in all buckets is then
not more than p−k

1 (t + Nc∗q r(q)pk
1 + npk

2). By the choice of k, npk
2 ≤ t and so this is

O(tp−k
1 + Nc∗q r(q)). By the definition of c∗q , Nc∗q r(q) = O(t) which means that this term

78 Chapter 4. Parameter-free Locality Sensitive Hashing for Spherical Range Reporting

is dominated by the former. Finally looking at every bucket takes time O(p−k
1), but

this is likewise dominated if t ≥ 1. Statement (ii) follows by the same line of reasoning,
simply using c instead of c∗q . Since this value of c does not have the expansion property,
the term Ncr(q) is present in the running time.

The running time bounds depend on the number of points at distance at most
cr. This is inherent to our approach when the expansion around the query is smaller
than the c value that can be read off from the number of repetitions and the LSH hash
family at hand. The influence of these points is however only linear in their number.

Theorem 14 basically shows that there exists a single level of the multi-level LSH
data structure that we want to probe when the number of close points t and the
expansion around the query are known.

4.5 Adaptive Query Algorithms

In this section we describe a query algorithm that (with small overhead) obtains the
results from Theorem 14 without knowing t or the expansion around the query. It
turns out that we can get something even better, namely, a running time equivalent to
the best over all choices for k and the number of repetitions if we were to know the
entire distribution of distances dist(q, x) from the query point q to data points x in the
data set.

We work on the multi-level LSH data structure DS set up for S ⊆ X with tables Tk,i
as introduced in Section 4.3. DS is assumed to have been built with L repetitions and
K levels.

Suppose a query algorithm inspects the buckets at level k. Let Wk denote the sum
of the number of points retrieved from these buckets and the number of buckets
inspected. By linearity of expectation, the expected work E[Wk] is

E[Wk] = p−k
1 (1 + ∑

x∈S
Pr[hk(q) = hk(x)]),

because the algorithm considers p−k
1 repetitions (we omit ceilings for ease of presenta-

tion) and the expected number of collision within one repetition is ∑x∈S Pr[hk(q) =
hk(x)].

The function E[Wk] over k will have a minimum in [0, K]. We denote this minimum
by Wsingle, i.e., we set

Wsingle = min
0≤k≤K

E[Wk]. (4.1)

Wsingle denotes the expected work on the “optimal level” of the data structure for the
query point, in the sense that we expect to check the fewest points while guaranteeing
to find each close point with constant probability. We refer to it with the subscript
“single” to emphasize that only a single bucket is checked in each repetition. Our
algorithmic goal is to describe an algorithm that finds this level with only small
overhead. Since Wsingle describes the minimum expected work knowing the distance
distribution from the query point, we note that this quantity is always upper bounded
by running times stated in Theorem 14. However, in many important cases it can be

4.5. Adaptive Query Algorithms 79

much smaller than that. To make this precise, we calculate Wsingle for different data
distributions, including “locally growth-restricted” as considered in [73]. In this case
it turns out that Wsingle = O(log n), an exponential improvement over the “standard”
query time O(nρ). Details are provided in Appendix 4.8.2.

The query algorithm is given as Algorithm 1 and works as follows: For each
level 0 ≤ k ≤ K, calculate the work of doing reps(k) = d2p−k

1 log 2ke repetitions by
summing up all bucket sizes. (The 2 log 2k factor is a technical detail explained in the
proof below.) Terminate as soon as the optimal level has been provably found, which
may be one that we have considered in the past, and report all close points in the
candidate set. The decision whether to consider a new level is based on whether the
number of buckets to look at is larger than the smallest candidate set found so far.

Algorithm 1 Adaptive-Single-Probe(q, p1, T)

1: k← 1, kbest ← 0, wbest ← n;
2: while reps(k) ≤ min(L, wbest) do
3: wk ← ∑

reps(k)
i=1 (1 + |Tk,i(q)|);

4: if wk < wkbest
then

5: kbest ← k; wbest ← wk;
6: k← k + 1;
7: return

⋃reps(kbest)
i=1 {x ∈ Tkbest,i(q) | dist(x, q) ≤ r}

Adaptive query algorithm on the Multi-level LSH data structure from Section 4.3 set
up with hash tables Tk,i with 0 ≤ k ≤ K and 1 ≤ i ≤ reps(k) = d2p−k

1 log 2ke. We
denote with |Tk,i(q)| the size of the bucket the query point q is hashed to in the i-th
repetition on level k.

Theorem 15. Let r and S ⊆ X with |S| = n be given. Then Algorithm 1 solves SRR with
point-wise constant probability. The expected running time of the while-loop in lines (2)–(6)
and the expected number of distance computations in line (7) is O(Wsingle log log Wsingle),
where

Wsingle = min
0≤k≤K

[
p−k

1 (1 + ∑
x∈S

Pr[hk(q) = hk(x)])

]
.

This theorem says that Algorithm 1 finds the best level for the query point at hand
with only small overhead compared to an algorithm that would have been told by
some oracle which level of the data structure has minimum expected work for the
query.

Proof. First we show that the algorithm works correctly, then we argue about its
running time.

For correctness, let y ∈ S be a point with dist(y, q) ≤ r. We want to show that with
constant probability, y is present in one of the buckets the algorithm inspects in line 7.
Since y is present in any particular repetition with probability pk

1, intuitively making

80 Chapter 4. Parameter-free Locality Sensitive Hashing for Spherical Range Reporting

1/pk
1 repetitions should suffice for correctness. However, our case is a bit more delicate.

The probability of y being present in
⋃

i Tk,i is pk
1 if we do not know anything about

the data. However, for the choice of k used by the algorithm,
⋃

i Tk,i is particularly
small. The expected size of

⋃
i Tk,i is larger conditioned on y being present, and so

equivalently if we choose the k that minimizes
⋃

i Tk,i we also decrease the chance of
y finding there. It is seems difficult to handle this correlation directly, so we take a
different approach here. We prove that y is present for every k we may choose with
sufficiently high probability before the algorithm inspects bucket sizes. This requires
us to choose a slightly higher number of repetitions, in particular reps(k) is such that
the probability of finding y is at least 1− (1− pk

1)
reps(k) ≥ 1− 1/(2k)2. By a union

bound over the K levels of the data structure, y can be found on every level with
probability at least 1−∑∞

k=1 1/(2k)2 ≥ 1/2, which shows correctness.
Now we consider the running time. The work inside the loop is dominated by

line (3) which takes time O(reps(k)), using constant time access to the size of the
buckets. Say the last value k before the loop terminates is k∗, then the loop takes time
∑k∗

k=1 O(log k · p−k
1) ≤ log k∗ · p−k∗

1 ∑∞
k=0 O(pk

1) = O(log k∗ · p−k∗
1) = O(wbest), where

the last equality is by the loop condition, reps(k∗) ≤ wbest.
In line 7, the algorithm looks at wbest points and buckets. Hence the total expected

work is

E[wbest] = E
[

min
0≤k≤K

wk

]
(4.2)

≤ min
0≤k≤K

E[wk]

= O(min
0≤k≤K

log k · E[Wk])

= O(log k′ · E[Wk′])

= O(Wsingle log log Wsingle).

Here the first inequality follows by Jensen’s inequality using the concavity of the
min function. We bound the minimum over k by choosing a concrete value k′ =
arg min0≤k≤K E[Wk]. Finally, we bound k′ by p−k′

1 ≤Wsingle.

4.5.1 A Multi-probing Version of Algorithm 1

A common technique when working with LSH is multi-probing [125, 151, 76, 21, 103].
The idea is that often the exact bucket hk(q) does not have a much higher collision
probability with close points than some “nearby” bucket σ(hk(q)). To be more precise,
for a hash function hk : X → Rk, we define a probing sequence σ = (σk,`)`≥1 as a
sequence of functions Rk → Rk. Now when we would probe bucket Tk,i(hk(q)), we
instead probe Tk,i(σk,1(hk(q))), Tk,i(σk,2(hk(q))), (Where σk,1 will usually be the
identity function.)

For a point y at distance r from q, we will be interested in the event [σk,`(hk(q)) =
hk(y)]. The probability that this event occurs is donated by pk,`. We say that a probing
sequence σ is reasonable, if (i) for each k we have pk,1 ≥ pk,2 ≥ . . . and (ii) for each `

4.5. Adaptive Query Algorithms 81

we have pk,` ≥ pk+1,`.1 The intuition is that we probe buckets in order of probability
of collision with the query point. In particular, by disjointness of the events, the
probability of a collision within the first ` probes is exactly

Pk,` = pk,1 + · · ·+ pk,`. (4.3)

This means that with ` probes per repetition, it suffices to repeat 1/Pk,` times to obtain
constant probability of finding y.

To state the complexity of our algorithm, we generalize the quantities Wk and
Wsingle from eq. (4.1) in the natural way to include multi-probing. We let Wk,` denote
the sum of the number points retrieved from the buckets plus the number of buckets
inspected for each parameter pair (k, `). By linearity of expectation, the expected work
for (k, `) is then

E[Wk,`] =
1

Pk,`

`+ ∑
x∈S

1≤i≤`

Pr[σk,i(h(q)) = h(x)]


Analogously to the single-probing approach, we let Wmulti denote the minimal work
one would expect to need for an LSH based approach that knows the optimal values
of k and `:

Wmulti = min
0≤k≤K
`≥1

E[Wk,`] (4.4)

Incorporating multi-probing into Algorithm 1 is done by carefully searching
through the now two-dimensional, infinite space [0, K]× [1, ∞] of parameters. The
algorithm is given as Algorithm 2 and works as follows: For parameter pairs (k, `) we
define two functions

reps(k, `) = d2 log(2`k)/Pk,`e and (4.5)
cost(k, `) = ` · reps(k, `), (4.6)

where reps(k, `) is the repetition count analogous to the first algorithm, and cost(k, `)
represents the number of buckets that need to be inspected for the parameter pair.
The parameter space is explored in order of this cost.

For each considered parameter pair (k, `), the actual work wk,` of inspecting the

candidate set
⋃reps(k,`)

i=1
⋃`

j=1 Tk,i(σk,j(hk(q))) is calculated by summing up the bucket
sizes plus the number of buckets. The algorithm keeps track of the size of the smallest
work load seen so far, and it terminates as soon as this size is smaller than the smallest
cost value of all parameter pairs not considered so far. We note that to obtain good
query time, we have to compute the work loads wk,` in line 9 of Algorithm 2 slightly
differently. The exact replacement is discussed in the proof below.

1As long as the collision probabilities pk,` are known or can be estimated accurately enough, an
arbitrary probing sequence can be made reasonable by sorting it. All probing sequences we know of
from the literature follow this approach, see [21] for an example.

82 Chapter 4. Parameter-free Locality Sensitive Hashing for Spherical Range Reporting

Algorithm 2 Adaptive-Multi-probe(q, σ, T)

1: wbest ← n; kbest ← 0; `best ← 1
2: PQ← empty priority queue . Manages pairs (k, `) with priority

cost(k, `) = ` · reps(k, `).
3: PQ.insert((1, 1))
4: while PQ.min() < wbest do
5: (k, `)← PQ.extractMin()
6: if k < K and ` = 1 then
7: PQ.insert((k + 1, 1))
8: PQ.insert((k, `+ 1))

9: wk,` ← ∑
reps(k,`)
i=1 ∑`

j=1
(
1 + |Tk,i,j(q)|

)
10: if wk,` < wbest then
11: kbest ← k; `best ← `; wbest ← wk,`

12: return
⋃reps(kbest,`best)

i=1
⋃`best

j=1 {x ∈ Tkbest,i,j(q) | dist(x, q) ≤ r}

Adaptive multi-probing query algorithm on the Multi-Level LSH data structure from
Section 4.3 with K levels and reps(k, `) = d2 log(2`k)/Pk,`e. For clarity, we write
Tk,i,j(q) = Tk,i(σk,j(hk,i(q))) for the jth bucket in the sequence at level k, repeititon i.
The algorithm scans the parameter space [0, K]× [1, ∞) in order of cost(k, `) starting
at (0, 1). The PQ.min function returns the smallest priority in the priority queue.

Theorem 16. Let S ⊆ X and r be given. Let (k, `) be a pair that minimizes the right-hand
side of eq. (4.4). Given a reasonable probing sequence σ, Algorithm 2 on DS solves SRR with
point-wise constant probability. If DS supports at least reps(k, `) repetitions, the expected
running time is O(Wmulti log3 Wmulti) and the expected number of distance computations is
O(Wmulti log Wmulti), where

Wmulti =

min
0≤k≤K
`≥1

 1
Pk,`

`+ ∑
x∈S

1≤i≤`

Pr[σk,i(h(q)) = h(x)]




Proof. We first show correctness and then bound the running time of the algorithm.
To show the correctness of the algorithm, let y ∈ S be an arbitrary point at distance

at most r from the query point q. Similarly to the proof of Theorem 15, we show that
the algorithm is correct for all parameter pairs simultaneously. For each pair (k, `)
considered by the algorithm, point y is found within the first ` probed buckets in
Tk,i with probability at least Pk,` for 1 ≤ i ≤ reps(k, `) by eq. (4.3). With reps(k, `)
repetitions, the probability of finding y is at least 1− (1− Pk,`)

reps(k,`) ≥ 1− (2`k)−2

using the definition from eq. (4.5). A union bound over the whole parameter space
then yields ∑∞

k=1 ∑∞
`=1(2`k)−2 < 7/10, and so y can be found in one of the probed

buckets for every parameter choice with constant probability, which shows correctness.
To analyze the running time, we consider the value wbest = wkbest,`best

found in
the loop. This value bounds the number of distance computations and we will show

4.5. Adaptive Query Algorithms 83

that the number of operations done in the while-loop can similarly be bounded by
O(wbest log2 wbest). We show that wbest is the smallest among all wk,` in the parameter
space, which will allow us to bound E(wbest) = O(Wmulti log Wmulti) as in the theorem.

Starting from the end, consider any pair (k, `) in the parameter space. If the
algorithm actually inspected this pair, we must have wk,` ≥ wbest, since we always
keep the smallest value seen. If the pair was not inspected by the algorithm, let (k′, `′)
be the pair of smallest cost left in the priority queue when the loop breaks. Then we
will show

wbest ≤ cost(k′, `′) ≤ cost(k, `) ≤ wk,`

proving minimality. Recall that cost(k, `) from eq. (4.6) is used as the priority of a
parameter pair in the priority queue. The loop condition thus directly gives us the first
inequality. For the third inequality note that cost(k, `) denotes the number of buckets
associated with a parameter pair (k, `). Since wk,` is the number of these buckets plus
the points points inside them, we get the inequality.

Finally for the second inequality, we will show that cost(k, `) is monotone in k
as well as in `. Since (k, `) was not considered by the algorithm, it must have either
higher k or ` than some pair in the priority queue while the other parameter is the
same, and so by monotonicity its cost is higher, giving the inequality.

The function cost(k, `) is monotone in k because pk,` ≥ pk+1,` for reasonable
probing sequences as defined. This implies Pk+1,` ≤ Pk,` and so 1/Pk,`, reps(k, `) and
cost(k, `) are all monotonically increasing in k.

For ` we have to be a bit more careful, since 1/Pk,` is decreasing in `. This is of
course because doing more multiprobing increases our chances of finding y, and so we
have to do fewer independent repetitions. Luckily `/Pk,` is monotonically increasing
in `, and so cost(k, `) is as well. The proof for this is given in Appendix 4.8.3.

Next we bound the running time of the loop. The way line 9 is written in the figure,
the loop actually takes far too much time. When computing a new value wk,`+1, we
instead take advantage of the work wk,` already discovered, and only consider the
number of buckets that are new or no longer needed. Specifically, we may compute

wk,`+1 = wk,` +
reps(k,`+1)

∑
i=1

|Tk,i,`+1(q)|

−
`

∑
j=1

reps(k,`+1)

∑
i=1+reps(k,`)

|Tk,i,j(q)|.

Using this calculation, we consider each bucket size at most twice (once when added,
and once when subtracted). Thus, computing the values wk,1, . . . , wk,` takes time at
most 2(reps(k, 1) + · · ·+ reps(k, `)).

Let k∗ be the largest value such that a parameter pair (k∗, `) was visited. Similarly,
for each k let `k be the largest value such that the pair (k, `k) was visited. Then the

84 Chapter 4. Parameter-free Locality Sensitive Hashing for Spherical Range Reporting

total time spent is no more than

k∗

∑
k=1

2
`k

∑
`=1

reps(k, `) ≤ 4
k∗

∑
k=1

log(2k`k)
`k

∑
`=1

1/Pk,`k

=
k∗

∑
k=1

(log k`k)O(`k(log `k)/Pk,`k
)

=
k∗

∑
k=1

(log `k)O(cost(k, `k)), (4.7)

where we used Lemma 4.8.1 to bound the sum over 1/Pk,`k
. Now, observe that

by the loop condition we know that cost(k, `k) ≤ wbest. Moreover, the value k∗

is bounded by k∗ = O(log wbest) because the algorithm considered (k∗, 1) and we
know that p−k∗

1 ≤ cost(k∗, 1) ≤ wbest. Finally, we bound `k by cost(k, `k) ≤ wbest, so
log `k = O(log wbest). This allows us to bound eq. (4.7) by O(wbest log2 wbest). Having
these bounds on k∗ and `k, we can now see that the loop is iterated O(wbest log wbest)
times and each priority queue operation takes time O(log log wbest), because there are
at most k∗ elements managed at the same time. So, all priority queue operations take
time O(wbest log wbest log log wbest) and are dominated by the work load computations.

Finally, a calculation analogous to eq. (4.2) shows that wbest = O(Wmulti log Wmulti)
which proves the theorem.

4.5.2 Summary of Results

We stress that the proposed algorithms work at least as well as standard LSH for
each data set and query, given the space restrictions w.r.t. the number of repetitions
provided by the user. In particular, these quantities are always at most as large as the
expected running times stated in Theorem 14 and Theorem 17 (to be presented in the
next section), given the number of repetitions is as large as stated in these theorems.
This comes at the cost of making slightly more repetitions per level. Specifically,
O(log log Wsingle) = O(log log n) more repetitions are needed in Theorem 15 and
O(log3 Wmulti) = O(log3 n) more repetitions are needed in Theorem 16.

Most importantly, Theorem 15 and Theorem 16 show that we are never more than
log factors away from the ideal query time of a tuned LSH data structure across all
possible parameters given the space constraints of the data structure. These quantities
are query specific parameters, so we cannot assume that offline tuning achieves these
candidate set sizes for all query points simultaneously.

4.6 A Probing Sequence in Hamming Space

In this section we analyze bit sampling LSH in Hamming space [88, Section 3.2.1] using
a novel, simple probing sequence. We consider the static setting as in Section 4.4.1,
where the number of points to report and the expansion around the query is known.
We then show the existence of a certain (optimal) level and probing length parameters,
and prove that using those give a good expected running time. The adaptive query
algorithm from Section 4.5 would find parameters at least as good as those, and thus

4.6. A Probing Sequence in Hamming Space 85

a

X

σ1,1(h1,k(q)) σ2,1(h2,k(q))

σ2,i(h2,k(q))

σ3,1(h3,k(q))

h1,k(y)

h2,k(y)
h3,k(y)

. . .

L

Figure 4.4: At each of the L repetitions we query the closest ` positions. Since the
projected distance X to our target point y is distributed as Bin(k, dist(q, y)/d), we find
y with constant probability by setting L = O(Pr[X ≤ a]−1).

has a running time at least as good as what we show here (asymptotically within
logarithmic factors).

Our scheme uses hash functions hk : {0, 1}d → {0, 1}k that sample k positions at
random with repetition. For a fixed query point q ∈ {0, 1}d and k ≥ 1, the probing
sequence σk,` maps hk(q) to the `-th closest point in {0, 1}k, where ties are broken
arbitrarily. This sequence can be generated efficiently, see [109].

Fix a target close point y ∈ {0, 1}d at distance r, let p be the probability that q
and y collide, and let pk,` be the probability that y lands in the `-th bucket that we
check. Furthermore, let V(a) = ∑a

i=0 (
k
i) be the volume of the radius a Hamming ball.

If σk,`hk(q) is at distance a to h(q), we have a collision if q and y differ in exactly a
out of the k coordinates chosen by hk. Hence, pk,` = pk−a(1− p)a for the a satisfying
V(a− 1) < ` ≤ V(a). Thus, the sequence is reasonable. Figure 4.4 illustrates our
approach.

The best approximations to sizes of hamming balls are based on the entropy
function. Hence, for the purpose of stating the theorem, we introduce the following
notation. For α ∈ [0, 1] and β ∈ [0, 1], we let

H(α) = α log 1/α + (1− α) log 1/(1− α) and
D (α | β) = α log(α/β) + (1− α) log((1− α)/(1− β))

denote the binary entropy of α and the relative entropy between α and β, respec-
tively. Moreover, let ρ(r, c) = log t

log n

(
1 + D(α|1−p(r))

H(α)

)
where α is defined implicitly from

log t
log n

(
1 + D(α|1−p(cr))

H(α)

)
= 1.

Theorem 17. Let r > 0 and c ≥ 1. Let S ⊆ {0, 1}d be a set of n points and let DS be the
Multi-level LSH data structure obtained from preprocessing S with L = Ω(nρ(r,c)). Given a
query point q, let t = Nr(q) + 1 and let c∗q be the expansion around q in S. If c∗q ≥ c, there

exists a query algorithm on DS to solve SRR with running time O(nρ(r,c∗q)), otherwise the
running time is O(nρ(r,c) + Ncr(q)).

86 Chapter 4. Parameter-free Locality Sensitive Hashing for Spherical Range Reporting

We do not know of a simple closed form for ρ(r, c), but Figure 4.2 on Page 71
shows a numerical evaluation for comparison with the running time obtained for
single-probing and other approaches.

The figure suggests that we always get better exponents than the single-probe
approach, and that we get optimal query time for large t and asymptotically optimal
for t = no(1). Corollary 5 confirms this:

Corollary 5. Let ρ = (log p1)/(log p2) < 1/c be the usual exponent for bit sampling, then:
If t ≥ n1−1/(p2 log p1+(1−p2) log 1/(1−p1)), the expected query time is O(nρ(r,c)) = O(nρ +

t).

If t = no(1), the expected query time is O(nρ(r,c)) = nρtO
(

1/(log n
log t)

)
= nρto(1).

Note that this is the first algorithm to beat nρtΩ(1), even if only for certain ranges
of t. The proof gives the exact asymptotic behavior.

Proof of Theorem 17. We will now show that the smaller number of repetitions
needed by multi-probing leads to fewer collisions with the t very close points in hard
instances of SRR. To see this, we bound the value of Wmulti from eq. (4.4) as follows:

Wmulti =

min
k,`

[
`+ ∑x∈S,1≤` Pr[σk,`(hk(q)) = hk(x)]

∑1≤` Pr[σk,`(hk(q)) = hk(y)]

]
≤ min

k,a

[
Vk(a) + ∑x∈S Pr[dist(hk(q), hk(x)) ≤ a]

Pr[dist(hk(q), hk(y)) ≤ a]

]
≤ min

k,a

[
Vk(a) + t + t′ Pr[X1 ≤ a] + n Pr[X2 ≤ a]

Pr[X1 ≤ a]

]
,

where X1 ∼ Bin(k, 1− p1) and X2 ∼ Bin(k, 1− p2).

The first inequality holds by restricting ` to only take values that are the volume of a
k-dimensional hamming ball; in the second inequality we upper bounded the collision
probabilities for points in ranges [0, r), [r, cr) and [cr, d].

The next step is to minimize this bound over the choice of k and a. We focus on
t′ = O(t) and so we want

Vk(a) = t = n Pr[X2 ≤ a]. (4.8)

For simplicity we write α = a/k for the normalized radius. We use the following tight
bound [153] on the tail of the binomial distribution, for α ∈ (0, 1/2):

Pr[Bin(k, p) ≤ αk] = exp(−k D (α | p))Θ(1/
√

k)

Vk(αk) = exp(kH(α))Θ(1/
√

k).

With those, our equation eq. (4.8) can be written as

k H(α) = log t = log n− k D (α | 1− p2) suggesting

k =
log t
H(α)

=
log n

H(α) + D (α | 1− p2)
and

log t
log n

=
D (α | 1− p2)

H(α)
+ 1.

4.7. Conclusion 87

We can then plug k into the bound on Wmulti:

Wmulti ≤
3t + t′ Pr[X1 ≤ a]

Pr[X1 ≤ a]

=
t

exp(−k D (α | 1− p1))Θ(1/
√

k)
+ t′

= O

(
n

log t
log n

(
D(α|1−p1)

H(α)
+1
))

+ t′ (4.9)

which are exactly the values stated in Theorem 17.

Proof sketch of Corollary 5. For the first statement observe that if α is as large as
1− p1, then Pr[Bin(k, 1− p1) ≤ αk] is constant. The second factor in the minimization
has all terms being within a constant of t, and so the whole thing becomes O(t). We
can check that α ≥ 1− p1 happens exactly when log t

log n ≥
H(1−p2)

H(1−p2)+D(1−p2|1−p1)
. In this

range t ≥ nρ, so O(t) = O(nρ + t).
For the second part of the corollary, we solve the equation implied by Theorem 17,

asymptotically as τ =
log t
log n → 0. Details can be found in Appendix 4.8.4, but the idea

is as follows: We first define fp(α) = 1 + D(α|p)
H(α)

, and show fp1(α) = (ρ + ψα/ log 1
p2
+

O(α2)) fp2(α) for ψ being the constant defined in Corollary 5. Using bootstrapping, we
show the inversion α = f−1

p2
(1/τ) =

log 1/p2
α log 1/α + O(1/ log 1

α). Plugging this into eq. (4.9)
proves the corollary.

4.7 Conclusion

In this article we proposed two adaptive LSH-based algorithms for Spherical Range
Reporting that are never worse than a static LSH data structure knowing optimal
parameters for the query in advance, and much better on many input distributions
where the output is large or the query is easy.

The main open problem remaining is to achieve target time O(nρ + t) for all inputs
and n and t ≤ n. One approach might be a data-dependent data structure as described
in [25]. In the light of our multi-probing results, this bound might even be obtained
using data-independent methods as well. Here, it would be interesting to analyze
other probing sequences. It would be interesting to see whether one can describe
adaptive query algorithms that make use of the output-sensitive space/time-tradeoff
data structures we described in Appendix 4.8.5. Finally, it would be natural to extend
our methods to give better LSH data structures for the approximate k-nearest neighbor
problem.

Acknowledgements

The authors would like to thank the anonymous reviewers for their useful suggestions,
which helped to improve the presentation of the paper. In addition they want to thank
Ninh Pham for early discussions about adaptive LSH and output sensitivity. Finally

88 Chapter 4. Parameter-free Locality Sensitive Hashing for Spherical Range Reporting

they thank the entire Scalable Similarity Search group at ITU Copenhagen for reviews
and interesting comments on earlier versions of this paper. Old Appendix

4.8 Appendix

4.8.1 Trie-based Version of the Data Structure

In this section we discuss an alternative representation of our data structure. This is
meant as a replacement for the Multi-level LSH data structure described in the main
paper.It offers better space consumption while being slower to query.

As in the LSH forest data structure proposed by Bawa et al. [41], we do not store
references to data points in hash tables. Instead we use a sorted array with a trie as a
navigation structure on the array. The technical description follows.

First, choose K · L functions gi,j for 1 ≤ i ≤ L and 1 ≤ k ≤ K from H independently
at random. For each i ∈ {1, . . . , L}, we store a sorted array Ai with references to all
data points in S ordered lexicographically by there bucket code over RK. To navigate
this array quickly, we build a trie over the bucket codes of all keys in S of depth
at most K. Each vertex of the trie has two attributes leftIndex and rightIndex. If
the path from the root of the trie to vertex v is labeled L(v), then leftIndex and
rightIndex point to the left-most and right-most elements in Ai whose bucket code
starts with L(v). We fix some more notation. For each point q ∈ X, we let vi,k′(q) be
the vertex in trie Ti that is reached by searching for the bucket code of q on level at
most k′. Furthermore, we let Ti,k(q) denote the set of keys that share the same length
k prefix with q in trie Ti. We can compute |Ti,k(q)| by subtracting vi,k(q).leftIndex
from vi,k(q).rightIndex+ 1.

4.8.2 Examples For CalculatingWsingle for Certain Input Distributions

In this section we discuss two examples to get a sense for quantity eq. (4.1) defined on
Page 78.

Example 1 (Random Points in Hamming Space) Fix a query point q ∈ {0, 1}d and
assume that our data set S consists of n uniform random points from {0, 1}d. Then the
distance X from our query point is binomially distributed ∼ Bin(n, 1/2). If we choose
the bitsampling hash function as in [96], ∑x∈S Pr[hk(q) = hk(x)] is just

n E[(1− X/d)k] = n E[(X/d)k]

by symmetry. This coresponds to finding the kth moment of a binomial random
variable, which we can calculate by writing X = d/2 + Zd

√
d/4 where Zd has some

distribution with E(Zd) = 0 and where Zd → Z converges to a standard normal. Then

n E[(X/d)k] = n2−k E(1 + Zd/
√

d)k

= n2−k(1 + k E(Zd)/
√

d + O(k2/d))

= n2−k(1 + O(k2/d)).

4.8. Appendix 89

For dimension d = Ω(log n)2 our algorithm would find the ideal k ≈ log2 n to get

∑x∈S Pr[hk(q) = hk(x)] = O(1) and W = n
log 1/p1

log 2 .
This work is of course exactly what we would expect for LSH with bitsampling

and far points at distance cr = d/2. However normally the user would have had to
specify this cr value, instead of the algorithm simply finding it for us.

Example 2 (Locally Growth-Restricted Data) Another interesting setting to consider
is when the data is locally growth-restricted, as considered by Datar et al. [73,
Appendix A]. This means that the number of points within distance r of q, for any
r > 0, is at most rc for some small constant c. In [73], the LSH framework is changed
by providing the parameter k to the hash function. However, if we fix r = k, our
algorithm will find a candidate set of size W = O(log n). So, our algorithm takes
advantage of restricted growth and adapts automatically on such inputs.

Formally we can reuse the proof from [73], since they also inspect all colliding

points. It is easy to see that theis integral
∫ r/
√

2
1 e−Bccb dc is still bounded by 2O(b)

when we start at c = 0 instead of c = 1, since the integrand is less than 1 in this
interval.

4.8.3 Lemma 4.8.1

Lemma 4.8.1. Let x1 ≥ x2 ≥ . . . be a non-increasing series of real numbers, and let
Xn = ∑n

k=1 xk be the nth prefix sum. Then it holds:

n/Xn ≤ (n + 1)/Xn+1 (4.10)
n

∑
k=1

1/Xk = O(n log n/Xn). (4.11)

Proof. Since the values xk are non-increasing, we have Xn ≥ nxn ≥ nxn+1 and so

(n + 1)Xn ≥ nXn + nxn+1 = nXn+1

which is what we want for eq. (4.10). For the second inequality, we use eq. (4.10)
inductively, we get a/Xa ≤ b/Xb whenever a ≤ b. Hence we can bound eq. (4.11)
term-wise as

n

∑
k=1

1
Xk

eq. (4.10)
≤

n

∑
k=1

n
kXn

=
n

Xn

n

∑
k=1

1
k

=
n

Xn
Hn

= O(n log n/Xn).

Here Hn = 1 + 1/2 + · · ·+ 1/n = log n + O(1) is the nth harmonic number with the
asymptotics by Euler [79].

90 Chapter 4. Parameter-free Locality Sensitive Hashing for Spherical Range Reporting

We may notice that the bound is tight for x1 = x2 = · · · = xn. Say xk = 1 for all k,
then Xk = k and ∑n

k=1 1/Xk = Hn = Ω(n log n/Xn). It is however common for the xis
to be strictly decreasing. In such cases we get closer to the other extreme, in which the
log n factor disappears as ∑n

k=1 1/Xk = n/Xn, which is sharp when x1 = 1 and xk = 0
for all other k ≥ 2.

4.8.4 Proof of Corollary 5, second part

Recall that our algorithm runs in time nρ(r,c) where ρ(r, c) =
log t
log n f (α, p1). Here

f (α, p) = 1 + D(α|1−p)
H(α)

, and α is define implicitly from log t
log n f (α, p2) = 1.

When t is small compared to n, the multiprobing radius α can be made quite small
as well. Working towards results for t = no(1) we thus consider the regime α = o(1):

f (α, p1) = 1 +
D (α | 1− p1)

H(α)

=
H(α) + D (α | 1− p1)

H(α) + D (α | 1− p2)
f (α, p2)

=
log 1

p1
+ α log p1

1−p1

log 1
p2
+ α log p2

1−p2

f (α, p2)

=

(
ρ +

ψ

log 1/p2
α + O(α2)

)
f (α, p2), (4.12)

for small α and constants

ρ =
log 1/p1

log 1/p2

ψ =
log p1

1−p1
log 1

p2
− log 1

p1
log p2

1−p2

log 1/p2
≤ log

1
1− p1

depending on p1 and p2. This already shows that we get running time

n
log t
log n ρ f (α,p2)(1+O(α))

= nρ(1+O(α)), which is optimal up to lower order terms, if in-
deed α = o(1). We thus direct our attention to how fast α goes to 0 as a function of t
and n. For that we first expand the following asymptotics:

H(α) + D (α | 1− p) = α log 1
1−p + (1− α) log 1

p

= log 1
p + O(α)

H(α) = α log 1
α + (1− α) log 1

1−α

= α log 1
α + (1− α)(α−O(α2))

= α(log 1
α + 1) + O(α2)

4.8. Appendix 91

f (α, p) =
H(α) + D (α | 1− p)

H(α)

=
log 1

p + O(α)

α(log 1
α + 1) + O(α2)

=
log 1

p + O(α)

α(log 1
α + 1)

(4.13)

We would like to solve eq. (4.13) for α, and plug that into eq. (4.12). To this end, we
let y = f (α, p)/ log 1

p and note the asymptotic bound 1/y2 < α < 1/y. That gives us
α = O(1/y) and log 1/α = O(log y), and we can use these estimates to “bootstrap” an
inversion:

α =
1 + O(α)

y(log 1
α + 1)

=

1 + O
(

1+O(α)

y(log 1
α+1)

)
y

(
log 1

1+O(α)

y(log 1
α +1)

+ 1

)

=
1 + O

(
1

y log y

)
y
(

log
[
y(log 1

α + 1)
]
+ log

[
1

1+O(1/y)

]
+ 1
)

=
1 + O

(
1

y log y

)
y log y + O(y log log y)

=
1 + o(1)
y log y

(4.14)

Plugging the result back into eq. (4.12) we finally get:

log nρ(r,c) = (log t) f (α, p1)

= log t
(

ρ +
ψ

log 1/p2
α + O(α2)

)
f (α, p2)

= log t
(

ρ +
ψ

log 1/p2

1 + o(1)
y log y

)
f (α, p2)

= log t
(

ρ f (α, p2) +
ψ(1 + o(1))
log f (α, p2)

)
= ρ log n + ψ

1 + o(1)

log log n
log t

log t

= ρ log n + o(log t),

as log n
log t goes to ∞, i.e. when t = no(1).
We note again that this improves upon all other known methods, which get

log E(Wk) = ρ log n + Ω(log t) for the same range of parameters.

92 Chapter 4. Parameter-free Locality Sensitive Hashing for Spherical Range Reporting

4.8.5 A Different Approach to Solving SRR

We reconsider the approach to solve SRR presented in Indyk’s Ph.D. thesis [92, Page 12]
under the name “enumerative PLEB”. While his method does not yield good running
times directly, it is possible to combine a number of very recent results, to get running
times similar to the ones achieved by our methods. We give a short overview of this
approach next. As in Section 4.4.1, we assume that the number of points t to report
is known. At the end of this section we describe a counting argument that is also
contained in Indyk’s Ph.D. thesis [92] that allows to solve the c-approximate spherical
range counting problem in an output-sensitive way.

Indyk describes a black-box reduction to solve SRR using a standard dynamic data
structure for the (c, r)-near neighbor problem. It works by repeatedly querying an
(c, r)-near point data structure (time O(nρq)) and then deleting the point found (time
O(nρu)), where ρq and ρu are the query- and update-parameters. (For a standard LSH
approach, we have ρq = ρu.) This is done until the data structure no longer reports
any points within distance r. Due to the guarantees of an (c, r)-near neighbor data
structure, in the worst case the algorithm recovers all points within distance cr, giving
a total running time of t′(nρq + nρu), where t′ is the number of points within distance
cr which might yield a running time of Ω(n1+ρ) as noticed in Section 4.4.

Of course, we can never guarantee sublinear query time when t′ is large, but we
can use a space/time-tradeoff-aware to improve the factor of t, when the number of
returned points is large.

We will assume the (c, r)-near neighbor data structure used in the reduction is
based on LSH. In [24], Andoni et al. describe a general data structure comprising
loosely “all hashing-based frameworks we are aware of”:

Definition 13 (List-of-points data structure).

• Fix sets Ai ⊆ Rd, for i = 1 . . . m; with each possible query point q ∈ Rd, we associate
a set of indices I(q) ⊆ [m] such that i ∈ I(q)⇔ q ∈ Ai;

• For a given dataset S, the data structure maintains m lists of points L1, L2, . . . , Lm,
where Li = S ∩ Ai.

Having such a data structure, we perform queries as follows: For a query point q,
we scan through each list Li for i ∈ I(q) and check whether there exists some p ∈ Li
with ‖p− q‖ ≤ cr. If it exists, return p.

Data structures on this form naturally allow insertions of new points, and we
notice that if “Lists” are replaced by “Sets” we can also efficiently perform updates.

To solve spherical range reporting, we propose the following query algorithm for a
point q:

1. For each i ∈ I(q) look at every point x in Li.

2. If ‖x− q‖ ≤ r, remove the point from all lists, Lj, where it is present.

This approach allows for a very natural space/time-tradeoff. Assuming that querying
the data structure takes expected time O(nρq) and updates take expected time O(nρu),
the expected running time of the query is O(nρq + tnρu). This asymmetry can be

4.8. Appendix 93

exploited with a time/space tradeoff. In very recent papers [115, 61, 24] it was shown
how to obtain such tradeoffs in Euclidean space for approximation factor c ≥ 1, for
any pair (ρq, ρu) that satisifies

c2√ρq + (c2 − 1)
√

ρu =
√

2c2 − 1.

To minimize running time, we may take exponents balancing T = nρq = tnρu and
obtain

log T
log n

=
1

2c2 − 1
+

c2 − 1
2c2 − 1

τ

+
c2 (c2 − 1

)
2c2 − 1

(
2− τ − 2

√
1− τ

)
(*)
≤ ρ + (1− c4ρ2)τ,

where τ =
log t
log n and ρ = 1/(2c2 − 1). Here (*) holds for t ≤ 2c2−1

c4 , and T = O(t)
otherwise. Note that this approach requires knowledge of t. A visualization of the
running time guarantees of this approach is shown in Figure 4.5. Note that it requires
knowledge of t and does not adapt to the expansion around the query point. It would
be interesting to see whether our adaptive methods could be used to obtain a variant
that is query-sensitive. Next, we discuss an algorithm for the spherical range counting
problem that can be used to obtain an approximation of the value t sufficient for
building the data structure presented here.

4.8.6 Solving c-approximate Spherical Range Counting

In [92, Chapter 3.6], Indyk shows that by performing O((log n)2/α3) queries to inde-
pendently built (c, r)-near neighbor data structures, there is an algorithm that returns
for a query q a number C such that (1− α)Nr(q) ≤ C ≤ (1 + α)Ncr(q) with constant
probability. The running time of the black-box reduction is O(nρ(log n)2/α3). We
show in this section that we can solve the problem in time O((n/t)ρ log n/α3).

At the heart of the algorithm of [92] is a subroutine that has the following output
behavior for fixed C:

1. If Ncr(q) ≤ C(1− α), it will answer SMALLER

2. If Nr(q) ≥ C, it will answer GREATER

The subroutine uses O(log n/α2) queries of independently build (c, r)-near neighbor
data structures, each built by sampling n/C points from the data set.

We can use the above subroutine to solve the spherical range counting problem in
time O((n/t)ρ log n/α3) time as follows. Half the size of α, and perform a geometrical
search for the values t = n, (1− α)n, (1− α)2n, Assuming that a query on a data
structure that contains n points takes expected time O(nρ) and stopping as soon as

94 Chapter 4. Parameter-free Locality Sensitive Hashing for Spherical Range Reporting

n0.6

n0.6

n0.8

n

n1.2

n1.4

n0.8 nn0.4n0.2 t

W

Linear Scan
Naïve LSH
List-of-points
Lower Bound

Figure 4.5: Visualization of the running time guarantees of the space/time-tradeoff
list-of-points data structure for c = 1.3 in Euclidean space. The x-axis shows the value
of t compared to n, the y-axis shows the expected work W. For comparison, we plotted
the lower bound of O(nρ + t), the running time O(tnρ) of the naïve LSH approach,
and the running time O(n) of a linear scan.

the algorithm answers “Greater” for the first time, we obtain a running time (without
considering the O(log n/α2) repetitions for each t value) of(n

n

)ρ
+

(
n

n(1− α)

)ρ

+

(
n

n(1− α)2

)ρ

+ · · ·+
(n

t

)ρ

≤
(n

t

)ρ
+

(
n(1− α)

t

)ρ

+

(
n(1− α)2

t

)ρ

+ . . .

=
(n

t

)ρ 1
1− (1− α)ρ

≤
(n

t

)ρ 1
αρ

as (1− α)ρ ≤ 1− αρ for 0 ≤ ρ ≤ 1,

which results in a total running time of O((n/t)ρ log n/α3).

Chapter 5

On the Complexity of Inner Product Similarity Join
Originally published in: Symposium on Principles of Database Systems, PODS 2016

Joint work with: Rasmus Pagh, Ilya Razenshteyn, Francesco Silvestri

5.1 Introduction

This paper is concerned with inner product similarity join (IPS join) where, given two
sets P, Q ⊆ Rd, the task is to find for each point q ∈ Q at least one pair1 (p, q) ∈ P×Q
where the inner product (or its absolute value) is larger than a given threshold s. Our
results apply also to the problem where for each q ∈ Q we seek the vector p ∈ P that
maximizes the inner product, a search problem known in literature as maximum inner
product search (MIPS) [158, 167].

Motivation

Similarity joins have been widely studied in the database and information retrieval
communities as a mechanism for linking noisy or incomplete data. Considerable
progress, in theory and practice, has been made to address metric spaces where
the triangle inequality can be used to prune the search space (see e.g. [20, 194]). In
particular, it is now known that in many cases it is possible to improve upon the
quadratic time complexity of a naive algorithm that explicitly considers all pairs of
tuples. The most prominent technique used to achieve provably subquadratic running
time is locality-sensitive hashing (LSH) [88, 84]. In the database community the
similarity join problem was originally motivated by applications in data cleaning [53,
32]. However, since then it has become clear that similarity join is relevant for
a range of other data processing applications such as clustering, semi-supervised
learning, query refinement, and collaborative filtering (see e.g. [165] for references and
further examples). We refer to the recent book by Augsten and Böhlen [35] for more
background on similarity join algorithms in database systems.

Inner product is an important measure of similarity between real vectors, particularly
in information retrieval and machine learning contexts [111, 173], but not captured by
techniques for metric similarity joins such as [98, 194]. Teflioudi et al. [175] studied

1Since our focus is on lower bounds, we do not consider the more general problem of finding all
such pairs. Also note that from an upper bound side, it is common to limit the number of occurrences
of each tuple in a join result to a given number k.

96 Chapter 5. On the Complexity of Inner Product Similarity Join

the IPS join problem motivated by applications in recommender systems based on
latent-factor models. In this setting, a user and the available items are represented
as vectors and the preference of a user for an item is given by the inner product of
the two associated vectors. Other examples of applications for IPS join are object
detection [80] and multi-class prediction [74, 100]. IPS join also captures the so-called
maximum kernel search, a general machine learning approach with applications such as
image matching and finding similar protein/DNA sequences [70].

Challenges of IPS join

Large inner products do not correspond to close vectors in any metric on the vector
space, so metric space techniques cannot directly be used. In fact, there are reasons
to believe that inner product similarity may be inherently more difficult than other
kinds of similarity search: Williams [186, 15] has shown that a truly subquadratic exact
algorithm for IPS join would contradict the Strong Exponential Time Hypothesis, an
important conjecture in computational complexity. On the upper bound side new
reductions of (special cases of) approximate IPS join to fast matrix multiplication have
appeared [179, 106], resulting in truly subquadratic algorithms even with approxi-
mation factors asymptotically close to 1. However, the approach of reducing to fast
matrix multiplication does not seem to lead to practical algorithms, since fast matrix
multiplication algorithms are currently not competitive on realistic input sizes. From
a theoretical viewpoint it is of interest to determine how far this kind of technique
might take us by extending lower bounds for exact IPS join to the approximate case.

Another approach to IPS join would be to use LSH, which has shown its utility in
practice. The difficulty is that inner products do not admit locality-sensitive hashing
as defined by Indyk and Motwani [167, Theorem 1]. Recently there has been progress
on asymmetric LSH methods for inner products, resulting in subquadratic IPS join
algorithms in many settings. The idea is to consider collisions between two different
hash functions, using one hash function for query vectors and another hash function
for data vectors [167, 168, 139]. However, existing ALSH methods give very weak
guarantees in situations where inner products are small relative to the lengths of
vectors. It is therefore highly relevant to determine the possibilities and limitations of
this approach.

Problem definitions

We are interested in two variants of IPS join that slightly differ in the formulation of
the objective function. For notational simplicity, we omit the term IPS and we simply
refer to IPS join as join. Let s > 0 be a given value. The first variant is the signed
join, where the goal is to find at least one pair (p, q) ∈ P× Q for each point q ∈ Q
with pTq ≥ s. The second variant is the unsigned join which finds, for each point
q ∈ Q, at least one pair (p, q) ∈ P×Q where |pTq| ≥ s. We observe that the unsigned
version can be solved with the signed one by computing the join between P and Q and
between P and −Q, and then returning only pairs where the absolute inner products
are larger than s. Signed join is of interest when searching for similar or preferred
items with a positive correlation, like in recommender systems. On the other hand,
unsigned join can be used when studying relations among phenomena where even

5.1. Introduction 97

a large negative correlation is of interest. We note that previous works do not make
the distinction between the signed and unsigned versions since they focus on settings
where there are no negative dot products.

Our focus is on approximate algorithms for signed and unsigned joins. Indeed,
approximate algorithms allow us to overcome, at least in some cases, the curse of
dimensionality without significantly affecting the final results. Approximate signed
joins are defined as follows.

Definition 14 (Approximate signed join). Given two point sets P, Q and values 0 < c < 1
and s > 0, the signed (cs, s) join returns, for each q ∈ Q, at least one pair (p, q) ∈ P×Q
with pTq ≥ cs if there exists p′ ∈ P such that p′Tq ≥ s. No guarantee is provided for q ∈ Q
where there is no p′ ∈ P with p′Tq ≥ s.

The unsigned (cs, s) join is defined analogously by taking the absolute value of
dot products. Indexing versions of signed/unsigned exact/approximate joins can be
defined in a similar way. For example, the signed (cs, s) search is defined as follows:
given a set P ⊂ Rd of n vectors, construct a data structure that efficiently returns
a vector p ∈ P such that pTq > cs for any given query vector q ∈ Rd, under the
promise that there is a point p′ ∈ P such that pTq ≥ s (a similar definition holds for
the unsigned case).

As already mentioned, LSH is often used for solving similarity joins. In this paper,
we use the following definition of asymmetric LSH based on the definition in [167].

Definition 15 (Asymmetric LSH). Let Up denote the data domain and Uq the query domain.
Consider a familyH of pairs of hash functions h = (hp(·), hq(·)). ThenH is said (s, cs, P1, P2)-
asymmetric LSH for a similarity function sim if for any p ∈ Up and q ∈ Uq we have:

1. if sim(p, q) ≥ s then PrH[hp(p) = hq(q)] ≥ P1;

2. if sim(p, q) < cs then PrH[hp(p) = hq(q)] ≤ P2.

When hp(·) = hq(·), we get the traditional (symmetric) LSH definition. The ρ value
of an (asymmetric) LSH is defined as usual with ρ = log P1/ log P2 [20]. Two vectors
p ∈ Up and q ∈ Uq are said to collide under a hash function from H if hp(p) = hq(q).

5.1.1 Overview of results

Hardness results

The first results of the paper are conditional lower bounds for approximate signed
and unsigned IPS join that rely on a conjecture about the Orthogonal Vectors Problem
(OVP). This problem consists in determining if two sets A, B ⊆ {0, 1}d, each one with
n vectors, contain x ∈ A and y ∈ B such that xTy = 0. It is conjectured that there
cannot exist an algorithm that solves OVP in O

(
n2−ε

)
time as soon as d = ω (log n),

for any given constant ε > 0. Indeed, such an algorithm would imply that the Strong
Exponential Time Hypothesis (SETH) is true [186].

Many recent interesting hardness results rely on reductions from OVP, however
we believe ours is the first example of using the conjecture to show the conditional
hardness for an approximate problem. In particular we show the following result:

98 Chapter 5. On the Complexity of Inner Product Similarity Join

Theorem 18. Let α > 0 be given and consider sets of vectors P, Q with |Q| = n, |P| = nα.
Suppose there exists a constant ε > 0 and an algorithm with running time at most dO(1)n1+α−ε,
when d and n are sufficiently large and for all s > 0, for at least one of the following IPS join
problems:

1. Signed (cs, s) join of P, Q ⊆ {−1, 1}d where c > 0.

2. Unsigned (cs, s) join of P, Q ⊆ {−1, 1}d where

c = e−o(
√

log n/ log log n) .

3. Unsigned (cs, s) join of P, Q ⊆ {0, 1}d where

c = 1− o(1) .

Then the OVP conjecture is false.

Discussion. For the search problem, theorem 18 implies that, assuming the OVP
conjecture, there does not exist a data structure for signed/unsigned (cs, s) inner
product search with (nd)O(1) construction time and n1−εdO(1) query time, for constant
ε > 0. This follows by considering a join instance with α constant small enough that
we can build the data structure on P in time o(nd). We can then query over all the
points of Q in time n1+α(1−ε)dO(1), contradicting the OVP conjecture. Our result can
be seen as an explanation of why all LSH schemes for IPS have failed to provide
sub-linear query times for small s. As the theorem however does not cover the case
where c is very small, e.g. n−δ for unsigned {−1, 1}d, we show in section 4 that for
such approximation requirements, there are indeed useful data structures.

We stress that the hardness result holds for algorithms solving signed/unsigned
(cs, s) joins for any c in the specified range and all s > 0. It is possible to show
complete relations between hard values of c, s and d, but for the sake of clearnes,
we have prefered to optimize the largest range of hard c’s. For intuition we can say,
that the exact instances of (cs, s) joins that are hard, turn out to be the ones where
s/d and cs/d are very small, that is when we have to distinguish nearly orthogonal
vectors from very nearly orthogonal vectors. If we inspect the proofs of Theorem 18
and Lemma 5.2.3, we see that for unsigned join in {−1, 1}d, the hard case has cs/d
around n1/ log log n. Similarly for {0, 1}d join, cs ends up at just barely ω(1), while the
d is as high as no(1). It is interesting to note for {0, 1} that if cs had been slightly lower,
at O(1), we could have solved the OVP problem exact in subquadratic time using an

n(no(1)

O(1)) = n1+o(1) algorithm.
It is interesting to compare our conditional lower bound to the recent upper bounds

by Karppa et al. [106], who get sub-quadratic running time for unsigned join of normal-
ized vectors in {−1, 1}d, when log(s/d)/ log(cs/d) is a constant smaller than 1.2 Our
next Theorem 19 shows that we cannot hope to do much better than this, though it does
not completely close the gap. A hardness result for log(s/d)/ log(cs/d) = 1− o(1) is
still an interesting open problem. However, while the algorithm of Karppa et al. works

2More precisely they need log(s/d)/ log(cs/d) < 2/ω, where ω is the matrix multiplication
constant. Note that the d term is due to normalization.

5.1. Introduction 99

even for dimension n1/3, our bound only requires the dimension to be slightly larger
than polylog, so it may well be that their algorithm is optimal, while another algorithm
with a higher dependency on the dimension matches our bound from above.

Theorem 19. Let α > 0 be given and consider sets of vectors P, Q with |Q| = n, |P| = nα.
Suppose there exists a constant ε > 0 and an algorithm with running time at most dO(1)n1+α−ε,
when d and n are sufficiently large and for all s > 0, for at least one of the following IPS join
problems:

1. Unsigned (cs, s) join of P, Q ⊆ {−1, 1}d where

log(s/d)
log(cs/d) = 1− o(1/

√
log n) .

2. Unsigned (cs, s) join of P, Q ⊆ {0, 1}d where

log(s/d)
log(cs/d) = 1− o(1/ log n) .

Then the OVP conjecture is false.

The {−1, 1}d case seems to be harder than the {0, 1}d case. In fact Valiant [179]
reduces the general case of P, Q ⊆ Rd to the case P, Q ⊆ {−1, 1}d using the Charikar
hyperplane LSH [52]. Another piece of evidence is that we can achieve runtime

n1+ log(s/d)
log(cs/d) using LSH for {0, 1}d, but it is not known to be possible for {−1, 1}d.

Furthermore there appears to be some hope for even better data dependent LSH, as
we show in section 5.4.2. The {0, 1}d case is particularly interesting, as it is occurs
often in practice, for example when the vectors represent sets. A better understanding
of the upper and lower bounds for this case is a nice open problem. For an elaborate
comparison of the different upper and lower bounds, see Table 5.1.

Techniques. From a technical point of view, the proof uses a number of different
algebraic techniques to expand the gap between orthogonal and non-orthogonal
vectors from the OVP problem. For the {−1, 1} we use an enhanced, deterministic
version of the “Chebyshev embedding” [179], while for the interesting {0, 1} part, we
initiate a study of embeddings for restricted alphabets.

Inner product LSH lower bounds

In the second part of the paper we focus on LSH functions for signed and unsigned
IPS. We investigate the gap between the collision probability P1 of vectors with inner
product (or absolute inner product) larger than s and the collision probability P2 of
vectors with inner product (or absolute inner product) smaller than cs. As a special
case, we get the impossibility result in [139, 167], that there cannot exist an asymmetric
LSH for unbounded query vectors. Specifically we get the following theorem:

Theorem 20. Consider an (s, cs, P1, P2)-asymmetric LSH for signed IPS when data and
query domains are d-dimensional balls with unit radius and radius U respectively. Then, the
following upper bounds on P1 − P2 apply:

100 Chapter 5. On the Complexity of Inner Product Similarity Join

(cs, s) join problem Ref. Hard apx. Possible Hard apx. Possible apx.

Signed, {−1, 1}d new c > 0 log(s/d)
log(cs/d) > 0

Unsigned, {−1, 1}d [106] c < n−ε log(s/d)
log(cs/d) ≥ 1− o

(
1

log n

)
log(s/d)
log(cs/d) = 1− ε

new c ≥ e
−o
(√

log n
log log n

)
c < n−ε log(s/d)

log(cs/d) ≥ 1− o
(

1√
log n

)
log(s/d)
log(cs/d) = 1/2− ε

Unsigned, {0, 1}d [168] log(s/d)
log(cs/d) = 1− ε

new c ≥ 1− o(1) c < n−ε log(s/d)
log(cs/d) ≥ 1− o

(
1

log n

)
Table 5.1: The table describes the ranges of approximations for (cs, s) joins that are hard
and possible to do in subquadratic time, when parametrized in terms of c (second and
third column) or log(s/d)/ log(cs/d) ratio (fourth and fifth column). Any algorithm
for subquadratic join, which overlap with these ranges, would contradict the OVP. The
permissible approximations are those ranges for which truly subquadratic algorithms
are known. The upper bounds cited to [106] use fast matrix multiplication, whereas
the rest don’t and are usable as data structures. The bounds not cited elsewhere are
new in this paper, though we are aware that other people have noted the hardness of
signed {−1, 1} join and the data structure for {0, 1} join.

1. if d ≥ 1 and s ≤ min{cU, U/(4
√

d}, we have P1 − P2 = O
(
1/log(d log1/c(U/s))

)
for signed and unsigned IPS;

2. if d ≥ 2 and s ≤ U/(2d), we have P1− P2 = O (1/log(dU/(s(1− c)))) for signed
IPS;

3. if d > Θ
(
U5/(c2s5)

)
and s ≤ U/8, we have P1 − P2 = O

(√
s/U

)
for signed and

unsigned IPS.

It follows that, for any given dimension d, there cannot exist an asymmetric LSH when the
query domain is unbounded.

Discussion. The upper bounds for P1 − P2 translate into lower bounds for the ρ

factor, as soon as P2 is fixed. To the best of our knowledge, this is the first lower
bound on ρ that holds for asymmetric LSH. Indeed, previous results [132, 142] have
investigated lower bounds for symmetric LSH and it is not clear if they can be extended
to the asymmetric case.

Techniques. The starting point of our proof is the same as in [139]: Use a collision
matrix given by two sequences of data and query vectors that force the gap to be small.
The proof in [139] then applies an asymptotic analysis of the margin complexity of
this matrix [174], and it shows that for any given value of P1 − P2 there are sufficiently
large data and query domains for which the gap must be smaller. Unfortunately,
due to their analysis, an upper bound on the gap for a given radius U of the query
domain is not possible, and so the result does not rule out very large gaps for small
domains. Our method also highlights a dependency of the gap on the dimension,
which is missing in [139]. In addition, our proof holds for d = 1 and only uses purely
combinatorial arguments.

5.1. Introduction 101

IPS upper bounds

In the third part we provide some insights on the upper bound side. We first show
that it is possible to improve the asymmetric LSH in [139, 168] by just plugging the
best known data structure for Approximate Near Neighbor for `2 on a sphere [31] into
the reduction in [139, 38]. With data/query points in the unit ball, this LSH reaches
ρ = (1− s)/(1 + (1− 2c)s). In the {0, 1} domain, this LSH improves upon the state of
the art [168] for some ranges of c and s.

Then we show how to circumvent the impossibility results in [139, 167] by showing
that there exists a symmetric LSH when the data and query space coincide by allowing
the bounds on collision probability to not hold when the data and query vectors are
identical.

We conclude by describing a data structure based on the linear sketches for `p
in [18] for unsigned (cs, s) search: for any given 0 < κ ≤ 1/2, the data structure yields
a c = 1/nκ approximation with Õ

(
dn2−2/κ

)
construction time and Õ

(
dn1−2/κ

)
query

time. Theorem 18 suggests that we cannot substantially improve the approximation
with similar performance.

The last data structure allows us to reach truly subquadratic time for c = 1/nκ for
the unsigned version in the {0, 1} and {−1, 1} domains for all value s. We note that
the result in [106] also reaches subquadtratic time for the {−1, 1} case. However, it
exploits fast matrix multiplication, whereas our data structure does not.

5.1.2 Previous work

Similarity join

Similarity join problems have been extensively studied in the database literature
(e.g. [53, 57, 66, 98, 99, 121, 124, 170, 181, 182, 190]), as well as in information retrieval
(e.g. [42, 72, 191]), and knowledge discovery (e.g. [6, 40, 183, 193, 195]). Most of
the literature considers algorithms for particular metrics (where the task is to join
tuples that are near according to the metric), or particular application areas (e.g.
near-duplicate detection). A distinction is made between methods that approximate
distances in the sense that we only care about distances up to some factor c > 1,
and methods that consider exact distances. Known exact methods do not guarantee
subquadratic running time. It was recently shown how approximate LSH-based
similarity join can be made I/O-efficient [149].

IPS join

The inner product similarity for the case of normalized vectors is known as “cosine
similarity” and it is well understood [52, 120, 158]. While the general case where
vectors may have any length appears theoretically challenging, practically efficient
indexes for unsigned search were proposed in [158, 110], based on tree data structures
combined with a branch-and-bound space partitioning technique similar to k-d trees,
and in [38] based on principal component axes trees. For document term vectors
Low and Zheng [123] showed that unsigned search can be sped up using matrix
compression ideas. However, as many similarity search problems, the exact version
considered in these papers suffers from the curse of dimensionality [184].

102 Chapter 5. On the Complexity of Inner Product Similarity Join

The efficiency of approximate IPS approaches based on LSH is studied in [167, 139].
These papers show that a traditional LSH does exist when the data domain is the
unit ball and the query domain is the unit sphere, while it does not exist when both
domains are the unit ball (the claim automatically applies to any radius by suitably
normalizing vectors). On the other hand an asymmetric LSH exists in this case, but
it cannot be extended to the unbounded domain Rd. An asymmetric LSH for binary
inner product is proposed in [168]. The unsigned version is equivalent to the signed
one when the vectors are non-negative.

Algebraic techniques

Finally, recent breakthroughs have been made on the (unsigned) join problem in the
approximate case as well as the exact. Valiant [179] showed how to reduce the problem
to matrix multiplication, when cs ≈ O(

√
n) and s ≈ O(n), significantly improving on

the asymptotic time complexity of approaches based on LSH. Recently this technique
was improved by Karppa et al. [106], who also generalized the sub-quadratic running
time to the case when log(s)/ log(cs) is small. In another surprising development
Alman and Williams [15] showed that for d = O (log n) dimensions, truly subquadratic
algorithms for the exact IPS join problem on binary vectors is possible. Their algorithm
is based on an algebraic technique (probabilistic polynomials) and tools from circuit
complexity.

5.2 Hardness of IPS join

We first provide an overview of OVP and of the associated conjecture in next Sec-
tion 5.2.1. Then, in Section 5.2.2, we prove Theorem 18 by describing some reductions
from the OVP to signed/unsigned joins.

5.2.1 Preliminaries

The Orthogonal Vectors Problem (OVP) is defined as follows:

Definition 16 (OVP). Given two sets P and Q, each one containing n vectors in {0, 1}d,
detect if there exist vectors p ∈ P and q ∈ Q such that pTq = 0.

OVP derives its hardness from the Strong Exponential Time Hypothesis
(Williams [186]), but could potentially be true even if SETH is not. We will therefore
assume the following plausible conjecture:3

Conjecture 3 (OVP, [186]). For every constant ε > 0, there is no algorithm for OVP with
|P| = |Q| = n and dimension d = ω(log n) running in O(n2−ε) time.

The conjecture does not hold for d = O(log n): recently Abboud et al. [2] have
proposed an algorithm for OVP running in time n2−1/O(γ log2 γ), when d = γ log n.
Thus, in order to disprove OVP, an algorithm must be strongly subquadratic when
d = γ log n for all constant γ > 0.

3We will use the name, OVP, for the problem as well as the conjecture. Sorry about that.

5.2. Hardness of IPS join 103

The OVP conjecture, as usually stated, concerns the case where the two sets have
equal size. However in order to eventually show hardness for data structures, we
consider the following generalization of OVP, which follows directly from the original:

Lemma 5.2.1 (Generalized OVP). Suppose that there exist constants ε > 0 and α > 0, and
an algorithm such that for d = ω (log n) the algorithm solves OVP for P, Q ⊆ {0, 1}d where
|P| = nα and |Q| = n in time O(n1+α−ε). Then OVP is false.

Proof. Without loss of generality assume α ≤ 1 (otherwise is enough to invert the role
of P and Q). Suppose we have an algorithm running in time O(n1+α−ε) for some
ε > 0. Take a normal OVP instance with |P| = |Q| = n. Split P into chunks Pi of size
nα and run the OVP algorithm on all pairs (Pi, Q). By our assumption this takes time
n1−αO(n1+α−ε) = O(n2−ε), contradicting OVP.

5.2.2 Reductions from OVP

In this section we prove Theorem 18, about hardness of approximate joins. We will
do this by showing the existence of certain efficient ‘gap embeddings’ that make
orthogonality discoverable with joins. We need the following definition:

Definition 17 (Gap Embedding). An unsigned (d1, d2, cs, s)-gap embedding into the
domain A is a pair of functions (f , g) : {0, 1}d1 → Ad′2 , where d′2 ≤ d2, A ⊆ R, and for any
x, y ∈ {0, 1}d1 :

| f (x)Tg(y)| ≥ s when xTy = 0

| f (x)Tg(y)| ≤ cs when xTy ≥ 1

A ‘signed embedding’ is analogous, but without the absolute value symbols. We further require
that the functions f and g can be evaluated in time polynomial to d2.

Gap embeddings connect to the join problem, by the following technical lemma:

Lemma 5.2.2. Suppose there exist a join algorithm for (un)signed (cs, s)-join over A and a
family of (un)signed (d, 2o(d), cs, s)-gap embeddings into A, for all d large enough.

• For given constants α ≥ 0, and ε > 0, the algorithm has running time dO(1)n1+α−ε

when |Q| = n and |P| = nα for all n and d large enough.

• The embedding has can be evaluated in time dO(1)
2 .

Then OVP can be solved in n1+α−ε time, and the conjecture is false.

Proof. First notice that for any function d2 = 2o(d) we can take d = ω(log n) growing
slowly enough that d2 = no(1).

To see this, assume d2(d) = 2 f (d) where f (d) = o(d). Then we have f (d(n)) =
o(d(n)) = o(1)d(n) that is f (d(n)) = f ′(n)d(n) for some f ′(n) = o(1). Now take

d(n) =
log n√

f ′(n)
= ω(log n) and we get d2(d(n)) = 2 f ′(n)d(n) = 2

√
f ′(n) log n = no(1) as

desired.

104 Chapter 5. On the Complexity of Inner Product Similarity Join

Hence, there is a family of (d(n), d2(n), cs, s)-gap embeddings for all n, where
d(n) = ω(log n) and d2(n) = no(1). By the generalized OVP lemma, for large enough
n, we can thus take a hard OVP instance with |Q| = n, |P| = nα and dimension
d(n). Apply the coresponding gap embedding, (f , g), to the instance, such that the
maximum inner product between f (P), g(Q) is at least s if the OVP instance has an
orthogonal pair and ≤ cs otherwise. Now run the algorithm for (un)signed (cs, s) join
on (f (P), g(Q)), which produces the orthogonal pair, if it exists.

It remains to show that the running time of the above procedure is O(n1+α−ε′)
for some ε′ > 0. But this is easy, since by assumption, performing the embedding
takes time n1+o(1), and nunning the algorithm on vectors of dimension no(1) takes time
n1+α−ε+o(1). So letting ε′ = ε/2 suffices.

The last ingredient we need to show Theorem 18 is a suitable family of embeddings
to use with Lemma 5.2.2:

Lemma 5.2.3. We can construct the following gap embeddings:

1. A signed (d, 4d− 4, 0, 4)-embedding into {−1, 1}.

2. An unsigned (d, (9d)q, (2d)q, (2d)qeq/
√

d/2)-embedding into {−1, 1}, for any q ∈N+,
d > 1.

3. An unsigned (d, k2d/k, k− 1, k)-embedding into {0, 1}, for any integer 1 ≤ k ≤ d.

Proof. We will use the following notation in our constructions: Let x� y be the con-
catenation of vectors x and y;4 Let xn mean x concatenated with itself n times;5

And let x� y mean the vectorial representation of the outer product xyT. Tensor-
ing is interesting because of the following folklore property: (x1 � x2)

T(y1 � y2) =
trace (x1xT

2)
T(y1yT

2) = trace x2(xT
1 y1)yT

2 = (xT
1 y1)(xT

2 y2).

(Embedding 1) The signed embedding is a simple coordinate wise construction:

f̂ (0) := (1,−1,−1) ĝ(0) := (1, 1,−1)

f̂ (1) := (1, 1, 1) ĝ(1) := (−1,−1,−1)

such that f̂ (1)T ĝ(1) = −3 and f̂ (0)T ĝ(1) = f̂ (1)T ĝ(0) = f̂ (0)T ĝ(0) = 1. This, on its
own, gives a (d, 3d, d− 4, d) embedding, as non orthogonal vectors need to have at
least one (1,1) at some position.

We can then translate all the inner products by −(d− 4):

f (x) := f̂ (x1)� · · ·� f̂ (xn)� 1d−4

g(x) := ĝ(x1)� · · ·� ĝ(xn)� (−1)d−4

which gives the (d, 4d− 4, 0, 4) embedding we wanted. Note that the magnitudes of
non orthogonal vectors may be large (−4d + 4), but we do not care about those for
signed embeddings.

4� for concatenation and � for tensoring stresses their dual relationship with + and × on the inner
products in the embedded space. We note however that in general, it is only safe to commute �’es and
�’es in an embedding (f , g), when both f and g are commuted equally.

5If we wanted to further stress the duality between construction and embedding, we could define ~n
to be the all 1 vector of length n. Then ~n� x would stand for repeating x n times.

5.2. Hardness of IPS join 105

(Embedding 2) We recall the recursive definition of the q-th order Chebyshev polynomial
of first kind, with q ≥ 0 (see, e.g., [5] page 782):

T0(x) = 1
T1(x) = x
Tq(x) = 2xTq−1(x)− Tq−2(x)

The polynomials have the following properties [179]:

|Tq(x)| ≤ 1 when |x| ≤ 1

|Tq(1 + ε)| ≥ eq
√

ε when 0 < ε < 1/2

We use the same coordinate wise transformation as in the signed embedding, but
instead of translating by a negative value, we translate by adding d + 2 ones, giving
a (d, 4d + 2, 2d− 2, 2d + 2) unsigned embedding. Let the vectors created this way be
called x and y.

On top of that, we would like to construct an embedding for the polynomial
Tq(u/2d), where Tq is the qth order Chebyshev polynomial of the first kind. However
since this will not in general be interger, there is no hope for constructing it using
{−1, 1}.

Luckily it turns out we can construct an embedding for bqTq(u/b) for any integers
b and q. Let (fq, gq) be the qth embedding of this type, defined by:

f0(x), g0(y) := 1, 1
f1(x), g1(y) := x, y

fq(x) := (x� fq−1(x))2� fq−2(x)(2d)2

gq(y) := (y� gq−1(y))2� (−gq−2(y))(2d)2

We make the following observations:

• If x and y are {−1, 1} vectors, then so are fq(x) and gq(y).

• The inner product of the embedded vectors, fq(x)Tgq(x) is a function of the
original inner product:

f0(x)Tg0(y) = 1

f1(x)Tg1(y) = xTy

fq(x)Tgq(y) = 2xTy fq−1(x)Tgq−1(y)

− (2d)2 fq−2(x)Tgq−2(y)

Indeed it may be verified from the recursive definition of Tq that fq(x)Tgq(y) =
(2d)nTq(xTy/2d) as wanted.

• Let dq be the dimension of fq(x) and gq(y). Then we have:

d0 = 1
d1 = 4d− 4

dq = 2(4d− 4)dq−1 + (2d)2dq−2

106 Chapter 5. On the Complexity of Inner Product Similarity Join

It can be verified that dq ≤ (9d)q for any q ≥ 0 and d ≥ 8. Interestingly the (2d)2

concatenations don’t increase dq significantly, while d2+ε for any ε > 0 would
have killed the simple exponential dependency.

• Finally, with dynamic programming, we can compute the embeddings in linear
time in the output dimension. This follows from induction over q.

Putting the above observations together, we have for any integer q ≥ 0 a
(d, (9d)q, (2d)q, (2d)qTq(1 + 1/d)) embedding. By the aforementioned properties of
the Chebyshev polynomials, we have the desired embedding. We note that the Cheby-
shev embedding proposed by Valiant [179] can provide similar results; however, our
construction is deterministic, while Valiant’s is randomized.

(Embedding 3) The third embedding maps into {0, 1}. The difficulty here is that without
−1, we cannot express subtraction as in the previous argument. It turns out however,
that we can construct the following polynomial:

(1− x1y1)(1− x2y2) · · · (1− xdyd)

since {0, 1} is closed under tensoring and

1− xiyi = (1− xi, 1)T(yi, 1− yi)

where 1− xi, yi and 1− yi are both in {0, 1}. The polynomial has the property of
being 1 exactly when the two vectors are orthogonal and 0 otherwise.

However we cannot use it directly with Lemma 5.2.2, as it blows up the dimension
too much, d2 = 2d1 . Instead we “chop up” the polynomial in k chunks and take their
sum:

k−1

∑
i=0

d/k

∏
j=1

(1− xik/d+jyik/d+j)

This uses just d2 = k2d/k dimensions, which is more manageble. If k does not divide d,
we can let the last “chop” of the polynomial be shorter than d/k, which only has the
effect of making the output dimension slightly smaller.

Finally we get the gap s = k and cs = k− 1. The later follows because for non
orthogonal vectors, at least one chunk has a (1− xiyi) terms which evaluates to zero.
We thus have a (d, k2d/k, k− 1, k)-embedding into {0, 1}. The explicit construction is
thus:

f (x) :=
k−1

�
i=0

d/k

�
j=1

(1− xik/d+j, 1)

g(x) :=
k−1

�
i=0

d/k

�
j=1

(yik/d+j, 1− yik/d+j)

And the running time is linear in the output dimension.

Finally we parametize and prove Theorem 18.

5.2. Hardness of IPS join 107

Proof. (Theorem 18) We first prove the bounds parametrized by c. To get the strongest
possible results, we want to get c as small as possible, while keeping the dimension
bounded by nδ for some δ > 0.

1. The first embedding is already on the form (d, 2o(d), 0, 4), showing theorem 1 for
signed (0, 4) join, and thus any c > 0.

2. In the second embedding we can take q to be any function in o
(

d
log d

)
, giving

us a family of (d, 2o(d), 2o(d), 2o(d)eo
(√

d
log d

)
). Thus by lemma 5.2.2, and for a small

enough d = ω(log n) in OVP, we get that even c ≤ e
−o
(√

log n
log log n

)
≤ 1/polylog(n)

is hard.

3. Finally for the third embedding, we can pick any k = ω(1) and less than d, to
get a family of (d, 2o(d), k− 1, k) embeddings. Again picking d = ω(log n) small
enough in OVP, we have by lemma 5.2.2 that c ≤ (k− 1)/k = 1− 1/k = 1− o(1)
is hard. Notice that this means any c not bounded away from 1 is hard.

For the bounds parametrized by log(s)/ log(cs), we need to tweak our families
slightly differently. This in turn allows for hardness for shorter vectors than used in
the previous results.

Proof. (Theorem 19)
For embedding 1 the result follows directly as log(s/d)/ log(cs/d)→ 0 as c→ 0.
We have to remember that the results in theorem 18 are stated in terms of normal-

ized s. For embedding 2 we calculate:

log(s/d2)

log(cs/d2)
=

q log(2/9) + q/
√

d− log 2
q log(2/9)

= 1− 1

log(9/2)
√

d
+

log 2
q log(9/2)

= 1− o
(

1/
√

log n
)

Where in the last step we have taken q =
√

d and d = ω(log n) as by the OVP
conjecture.

It is important to notice that we could have taken q much larger, and still satisfied
lemma 5.2.2. However that wouldn’t have improved the result, except by more
quickly vanishing second order asymptitic terms. What we instead gain from having
d2 = (9d)

√
d is that, as one can verify going through the lemma, we show hardness for

any join algorithm running in time d
o(log d

log log2 d
)
n1+α−ε. That is, the hardness holds even

for algorithms with a much higher dependency on the dimension than polynomial.

108 Chapter 5. On the Complexity of Inner Product Similarity Join

Q
ue

ry
po

in
ts

q i

Data points pj
j = h− 1j = 0

i=
0

i=
h-

1
G2,1

G3,0

G2,0

G1,0

G1,1

G1,2

G1,3

G0,0

G0,1

G0,2

G0,3

G0,4

G0,5

G0,6

G0,7

(1, 5)
Top

blocks
of

G
2,0

G0,0

G0,1

G1,0

G0,2

G1,1

G0,3

(0, 6)

G2,0

(2, 4)

Left blocks of G2,0
Data points pj

Q
ue

ry
po

in
ts

q i

Figure 5.1: On the left, a 15× 15 grid: black nodes are P1-nodes, gray nodes are
P2-nodes; the colored blocks denote the partitioning of the lower triangle into squares.
On the right, a zoom of the G2,0 square and of its left and top squares: the red nodes
collide under a (2, 4)-shared function; the green nodes collide under a (1, 5)-partially
shared function; the cyan node collide under a (0, 6)-proper function (specifically, row
proper).

Similarly, we calculate for embedding 3:

log(s/d2)

log(cs/d2)
=

log k
k2d/k

log k−1
k2d/k

= 1− k log(1 + 1/(k− 1))
d + k log(1 + 1/(k− 1))

= 1− 1/d + O(1/(kd))
= 1− o(1/ log n)

Where we have taken k = d and d = ω(log n) as by the OVP conjecture.
Taking k = d means that d2 is only 2d.

5.3 Limitations of LSH for IPS

We provide an upper bound on the gap between P1 and P2 for an (s, cs, P1, P2)-
asymmetric LSH for signed/unsigned IPS. For the sake of simplicity we assume
the data and query domains to be the d-dimensional balls of radius 1 and U ≥ 1,
respectively. The bound holds for a fixed set of data vectors, so it applies also to
data dependent LSH [31]. A consequence of our result is that there cannot exist an
asymmetric LSH for any dimension d ≥ 1 when the set of query vectors is unbounded,
getting a result similar to that of [139], which however requires even the data space to
be unbounded and d ≥ 2.

We firsts show in Lemma 5.3.1 that the gap P1 − P2 can be expressed as a function
of the length h of two sequences of query and data vectors with suitable collision
properties. Then we provide the proof of the aforementioned Theorem 20, where we
derive some of such sequences and then apply the lemma.

5.3. Limitations of LSH for IPS 109

Lemma 5.3.1. Suppose that there exists a sequence of data vectors P = {p0, . . . , pn−1} and
a sequence of query vectors Q = {q0, . . . , qn−1} such that qT

i pj ≥ s if j ≥ i and qT
i pj ≤ cs

otherwise (resp., |qT
i pj| ≥ s if j ≥ i and |qT

i pj| ≤ cs otherwise) . Then any (s, cs, P1, P2)-
asymmetric LSH for signed IPS (resp., unsigned IPS) must satisfy P1 − P2 ≤ 1/(8 log n).

Proof. For the sake of simplicity we assume that n = 2` − 1 for some ` ≥ 1; the
assumption can be removed by introducing floor and ceiling operations in the proof.
Let H denote an (s, cs, P1, P2)-asymmetric LSH family of hash functions, and let h be a
function in H. The following argument works for signed and unsigned IPS.

Consider the n × n grid representing the collisions between Q × P, that is, a
node (i, j) denotes the query-data vectors qi and pj. We say that a node (i, j), with
0 ≤ i, j < n, collides under h if vectors qi and pj collide under h. By definition of
asymmetric LSH, all nodes with j ≥ i must collide with probability at least P1, while
the remaining nodes collide with probability at most P2. We use lower triangle to refer
to the part of the grid with j ≥ i and P1-nodes to refer to the nodes within it; we refer
to the remaining nodes as P2-nodes.

We partition the lower triangle into squares of exponentially increasing side as
shown in Figure 5.1. Specifically, we split the lower triangle into squares Gr,s for every
r and s with 0 ≤ r < log(n + 1) = ` and 0 ≤ s < (n + 1)/2r+1 = 2`−r−1, where Gr,s
includes all nodes in the square of side 2r and top-left node ((2s + 1)2r − 1, (2s +
1)2r − 1). For a given square Gr,s, we define the left squares (resp., top squares) to be
the set of squares that are on the left (resp., top) of Gr,s. We note that the left squares
(resp., top squares) contain 2r−i−1 squares of side 2i for any 0 ≤ i < r and all P1-nodes
with s2r+1 ≤ i, j < (2s + 1)2r − 1 (resp., (2s + 1)2r − 1 < i, j ≤ (s + 1)2r+1 − 2) .

We define the mass mi,j of a node (i, j) to be the collision probability, under H, of qi
and pj. We split the mass of a P1-node into three contributions called shared mass,
partially shared mass, and proper mass, all defined below. Consider each P1-node (i, j)
and each function h ∈ H where (i, j) collides. Let Gr,s be the square containing (i, j)
and let Kh,i,j denote the set of P1-nodes (i′, j′) on the left side of the same row or on the
top of the same column of (i, j) (i.e., i′ = i and i ≤ j′ < j, or j′ = j and i < i′ ≤ j) and
with the same hash value of (i, j) under h (i.e., h(i) = h(j) = h(i′) = h(j′)). Clearly all
nodes in Kh,i,j collide under h. For the given node (i, j), we classify h as follows (see
Figure 5.1 for an example):

• (i, j)-shared function. Kh,i,j contains at least a node (i, j′) in a left square, and at
least a node (i′, j) in a top square.

• (i, j)-partially shared function. Function h is not in case 1 and Kh,i,j contains at least
a node node (i, j′) with j′ < j, and at least a node (i′, j) with i′ > i. That is, Kh,i,j
contains only nodes in Gr,s and in the left blocks, or only nodes in Gr,s and in
the top blocks.

• (i, j)-proper function. Kh,i,j contains no points (i, j′) for any i ≤ j′ < j or contains
no points (i′, j) for any i < i′ ≤ j. That is, Kh,i,j cannot contain at the same time a
point in a left square and a point in a top square. Function h is said row (resp.,
column) proper if there are no nodes in the same row (resp., column). We break
ties arbitrary but consistently if Kh,i,j is empty.

110 Chapter 5. On the Complexity of Inner Product Similarity Join

The shared mass ms
i,j is the sum of probabilities of all (i, j)-shared functions. The partially

shared mass mps
i,j is the sum of probabilities of all (i, j)-partially shared functions.

The proper mass mp
i,j is the sum of probabilities of all (i, j)-proper functions (the

row/column proper mass includes only row/column proper functions). We have
mi,j = mp

i,j + mps
i,j + ms

i,j. The mass Mr,s of a square Gr,s is the sum of the masses of all

its nodes, while the proper mass Mp
r,s is the sum of proper masses of all its nodes. The

sum of row proper masses of all nodes in a row is at most one since a function h is
row proper for at most one node in a row. Similarly, the sum of column proper masses
of all nodes in a column is at most one. Therefore, we have that ∑r,s Mp

r,s ≤ 2n.
We now show that ∑(i,j)∈Gr,s ms

i,j ≤ 22rP2 for every Gr,s. Consider a node (i, j) in
a given Gr,s. For each (i, j)-shared function h there is a P2-node colliding under h:
indeed, Kh,i,j contains nodes (i, j′) in the left blocks and (i′, j) in the top blocks with
h(i) = h(j) = h(i′) = h(j′) (i.e., s2r+1 ≤ j′ < (2s + 1)2r − 1 and (2s + 1)2r − 1 < i′ ≤
(s + 1)2r+1 − 2); then node (i′, j′) is a P2-node since i′ > j′ and collides under h. By
considering all nodes in Gr,s, we get that all the P2-nodes that collide in a shared
function are in the square of side 2r−1 and bottom-right node in ((2s + 1)2r, (2s +
1)2r − 2). Since these P2-nodes have total mass at most 22rP2, the claim follows.

We now prove that ∑(i,j)∈Gr,s mps
i,j ≤ 2r+1Mp

r,s. A (i, j)-partially shared function is
(i′, j) or (i, j′)-proper for some i′ < i and j′ > j, otherwise there would be a node in
left blocks and a node in top blocks that collide with (i, j) under h, implying that h
cannot be partially shared. Since an (i, j)-proper function is partially shared for at
most 2r+1 nodes in Gr,s, we get

∑
(i,j)∈Gr,s

mps
i,j ≤ 2r+1 ∑

(i,j)∈Gr,s

mp
i,j = 2r+1Mp

r,s.

By the above two bounds, we get

Mr,s ≤ ∑
(i,j)∈Gr,s

mp
i,j + mps

i,j + ms
i,j ≤ (2r+1 + 1)Mp

r,s + 22rP2.

Since Mr,s ≥ 22rP1 we get Mp
r,s ≥ (2r−1 − 1)(P1 − P2). By summing among all squares,

we get

2n ≥
`−1

∑
r=0

2`−r−1−1

∑
s=0

Mp
r,s > (P1 − P2)

n log n
4

from which the claim follows.

We are now ready to prove Theorem 20.

Proof. (Theorem 20) The upper bounds to P1 − P2 in the different cases follow by ap-
plying Lemma 5.3.1 with different sequences of query and data vectors. We anticipate
that in all three cases the gap P1 − P2 becomes 0 if the query ball is unbounded (i.e.,
U = +∞), and hence there cannot exist an asymmetric LSH with P1 > P2.

First case. We now show that there exist data and query sequences of length
n = Θ (md), with m = Θ

(
log1/c(U/s)

)
, for signed and unsigned IPS in d ≥ 1

dimensions if s = O
(

U/
√

d
)

. Note that m ≥ 1 since we assume s ≤ cU. As a

5.3. Limitations of LSH for IPS 111

warm-up, we start with d = 1. Let Q = {qi, ∀ 0 ≤ i < n} and P = {pj, ∀ 0 ≤ j < n}
with

qi = Uci, pj = s/(Ucj). (5.1)

Let pj ∈ P and qi ∈ Q. We get pT
j qi = ci−js: if j ≥ i then pT

j qi ≥ s and pT
j qi ≤ cs

otherwise. Data and query vectors are respectively contained in the unit ball and
in the ball of radius U since i, j < Θ

(
log1/c(U/s)

)
. Being the sequences P and Q of

length m, the claim follows.
Let now d ≥ 2 and assume for the sake of simplicity d = 2d′ (the general case

just requires some more tedious computations). Consider the following sequences
Qk = {qi,k, ∀ 0 ≤ i < m} and Pk = {pj,k, ∀ 0 ≤ j < m} for each 0 ≤ k < d′, where
qi,k and pj,k are d-dimensional vectors defined as follows. Denote with qi,k[t] the
t-th coordinate of qi,k, for 0 ≤ t < d (similarly for pj,k). For vector qi,k we have:
qi,k[2k] = Uci; qi,k[2t + 1] = 2s for each k ≤ t < d′; remaining positions are set to
0. For vector pi,k we have: pi,k[2k] = s/(Uci); pi,k[2k− 1] = 1/2 (only when k > 0);
remaining positions are set to 0. Intuitively, these data and query sequences follow by
constructing the 1-dimensional sequences in Equation 5.1 on d′ orthogonal dimensions
and then by suitably translating each sequence. As an example, for d = 6 we get:

qi,0 = (Uci, 2s, 0, 2s, 0, 2s) pj,0 = (s/(Ucj), 0, 0, 0, 0, 0);

qi,1 = (0, 0, Uci, 2s, 0, 2s) pj,1 = (0, 1/2, s/(Ucj), 0, 0, 0);

qi,2 = (0, 0, 0, 0, Uci, 2s) pj,2 = (0, 0, 0, 1/2, s/(Ucj), 0).

The query and data sequences Q = {Q0, . . . , Qd′−1} and P = {P0, . . . , Pd′−1} satisfy
the hypothesis of Lemma 5.3.1. Indeed, it can be verified that: pT

j,`qi,` = sci−j and thus
pT

j,`qi,` ≥ s if j ≥ i and pT
j,`qi,` ≤ cs otherwise; pT

j,`′qi,` = 0 if `′ < `; pT
j,`′qi,` ≥ s if `′ > `.

Further, when s ≤ U/(2
√

d) data and query vectors are contained in balls with radius
1 and U respectively, with the exception of vectors qi,k for 0 ≤ i < 1/(2 log(1/c))
and 0 ≤ k < d′ which are contained in a ball of radius 2U. However, these query
vectors and the respective data vectors can be removed from the above sequences
without affecting the asymptotic length. We thus get two sequences of length n =
(m− 1/(2 log(1/c)))d′ = Θ

(
d log1/c(U/s)

)
, and the claim follows. Since all inner

products are non negative, the upper bound on P1− P2 holds for signed and unsigned
IPS.

Second case. Longer query and data sequences, with length n = Θ (md) for
m = Θ

(√
U/(s(1− c))

)
, can be constructed for signed IPS when d ≥ 2. We start

considering the case d = 2. Let Q = {qi, ∀ 0 ≤ i < m} and P = {pj, ∀ 0 ≤ j < m} with

qi =

(√
sU(1− (1− c)i),

√
sU(1− c)

)
,

pj =

(√
s
U

, j

√
s(1− c)

U

)
.

(5.2)

We observe that these sequences are similar to the one used in [139]. We have
pT

j qi = s(1− c)(j− i) + s: then, pT
j qi ≥ s if j ≥ i and pT

j qi ≤ cs otherwise. If s ≤ U/2,
data and query vectors are within balls of radius respectively 1 and U.

112 Chapter 5. On the Complexity of Inner Product Similarity Join

Let now d ≥ 2 and assume for the sake of simplicity d = 2d′ (the general case
just requires some more tedious computations). Consider the following sequences
Qk = {qi,k, ∀ 0 ≤ i < m} and Pk = {pj,k, ∀ 0 ≤ j < m} for each 0 ≤ k < d′,
where qi,k and pj,k are d-dimensional vectors defined as follows. For vector qi,k we
have: qi,k[2k] =

√
sU(1− (1− c)i); qi,k[2k + 1] =

√
sU(1− c); qi,k[2t] =

√
Us for each

k < t < d′; remaining positions are set to 0. For vector pi,k we have: pi,k[2k] =
√

s/U;
pi,k[2k] = j

√
s(1− c)/U; remaining positions are set to 0. We observe that the two

sequences follow by constructing the 2-dimensional sequences in Equation 5.2 on
d′ orthogonal planes and then suitably translate. Then, it follows that data and
query sequences P = {P0, . . . Pd′−1} and Q = {Q0, . . . Qd′−1} satisfy the hypothesis
of Lemma 5.3.1 and they are respectively contained in balls or radius one and U
respectively if s ≤ U/(2d). Being m = nd′ = O

(
d
√

U/(s(1− c))
)

and the claim
follows. We observe that the above sequences may generate large negative inner
products and then they cannot be used for unsigned IPS.

Third case. Finally, we provide an upper bound on P1 − P2 for signed and unsigned
IPS that holds for d ≥ Θ

(
U5/(c2s5)

)
by providing data and query sequences of length

n = 2
√

U/(8s). Suppose there exists a family Z of 2n− 1 vectors such that |zT
i zj| ≤ ε

and (1− ε) ≤ zT
i zi ≤ (1+ ε) for any zi 6= zj, for ε = c/(2 log2 n). It can be shown with

the Johnson-Lindenstrauss lemma that such a family exists when d = Ω
(
ε−2 log n

)
(for an analysis see e.g. [150]). For notational convenience, we denote the vectors in Z
as follows: zb0 , zb0,b1 , . . . , zb0,b1,...,blog n−1

for each possible value b0, . . . , blog n−1 ∈ {0, 1}.
Let bi,` denote the `-th bit of the binary representation of i and with b̄i,` its negation,
where we assume ` = 0 to be the most significant bit. Let Q = {qi, ∀ 0 ≤ i < n} and
P = {pj, ∀ 0 ≤ j < n} with

qi =
√

2sU
log n−1

∑
`=0

b̄i,`zbi,0,...bi,`−1,b̄i,`

pj =
√

2s/U
log n−1

∑
`=0

bj,`zbj,0,...bj,`−1,bj,`

Since the inner product of two distinct vectors in Z is in the range [−ε, ε], we have
that pT

j qi can be upper bounded as

pT
j qi ≤ε2s(log2 n− log n)+

+ 2s
log n−1

∑
`=0

bj,`b̄i,`zbj,0,...bj,`−1,bj,`
zbi,0,...bi,`−1,b̄i,`

Suppose i > j. Then there exists a bit position `′ such that bi,`′ = 1, bj,`′ = 0 and
bi,` = bj,` for all ` < `′. We get bj,`b̄i,` = 0 for all ` ≤ `′ and zbj,0,...bj,`−1,bj,`

6= zbi,0,...bi,`,b̄i,`

for all ` > `′. It then follows that pT
j qi < ε2s log2 n when i > j. On the other hand we

get that pT
j qi can be lower bounded as

pT
j qi ≥− ε2s(log2 n− log n)+

+ 2s
log n−1

∑
`=0

bj,`b̄i,`zbj,0,...bj,`−1,bj,`
zbi,0,...bi,`−1,b̄i,`

5.4. Upper bounds 113

Suppose i ≤ j. Then there exists an index `′ such that bj,`′ = 1, bi,`′ = 0 and bj,` = bi,`
for all ` < `′. We get bj,`′ b̄i,`′ = 1 and zbj,0,...bj,`′−1,bj,`′

= zbi,0,...bi,`′−1,b̄i,`′
. It follows that

pT
j qi ≥ −ε2s log2 n + 2s. When d = Ω

(
(log5 n)/c2

)
, we can set ε = c/(2 log2 n).

From the above lower and upper bounds, it then follows that pT
j qi ≤ cs if j < i

and pT
j qi ≥ s if j ≥ i and hence the sequences Q and P satisfy the hypothesis of

Lemmma 5.3.1. The data and query vectors in P and Q are respectively contained
in balls of radius 1 and U: each qi (resp., pj) is given by the sum of at most log n
vectors whose norms are not larger than

√
2sU(1 + ε) (resp.,

√
2s/U(1 + ε)); being

n = 2
√

U/(8s) the claim follows.

5.4 Upper bounds

This section contains three observations with implications for IPS join and its indexing
version. We first notice in Section 5.4.1 that by plugging the best known LSH for `2
distance on a sphere [31] into a reduction presented in [38, 139], we get a data structure
based on LSH for signed IPS with search time exponent ρ = (1− s)/(1 + (1− 2c)s).

Then, in Section 5.4.2, we show how to circumvent the results in [139, 167] showing
that symmetric LSH is not possible when the data and query domains coincide (while
an asymmetric LSH does exist). We use an slightly modified definition of LSH that
disregards the collision probability of 1 for pairs of identical vectors, and assume
that vectors are represented with finite precision. The LSH construction uses explicit
incoherent matrices built using Reed-Solomon codes [137] to implement a symmetric
version of the reduction in [38, 139].

Finally, in Section 5.4.3, we solve unsigned (cs, s) join using linear sketches for `p
norms from [18]. Given κ ≥ 2 we obtain approximation c = 1/n1/κ in Õ

(
dn2−2/κ

)
time. Although this trade-off is not that strong, it is not far from the conditional lower
bound in Theorem 18.

5.4.1 Asymmetric LSH for signed IPS

Figure 5.2: Our ρ value (DATA-DEP) compared to that of [139] (SIMP) and the binary
data only of [168] (MH-ALSH).

We assume the data and query domains to be d-dimensional balls with respective
radius 1 and U. Vectors are embedded into a (d + 2)-dimensional unit sphere using

114 Chapter 5. On the Complexity of Inner Product Similarity Join

the asymmetric map as in [139]: a data vector p is mapped to (p,
√

1− ||p||2, 0), while
a query q is mapped to (q/U, 0,

√
1− ||q||2/U2). This transformation just scales the

inner product by a factor U, and hence signed inner product search can be seen as an
instance of ANN in `2 with distance threshold r =

√
2(1− s/U) and approximation

c′ =
√
(1− cs/U)/(1− s/U). The latter can be solved in space O(n1+ρ + dn) and

query time O(nρ) using the LSH construction of [31]. We get the following ρ value
(for the LSH gap as well as for the exponent of the running time):

ρ =
1

2c′2 − 1
=

1− s/U
1 + (1− 2c)s/U

. (5.3)

In Figure 5.2, we plot the ρ values of three LSH constructions: the one proposed
here (with U = 1), the one from [139], and the one from [168]. The latter works
only for binary vectors. We point out that our bound is always stronger than the one
from [139] and sometimes stronger than the one from [168], despite that the latter is
tailored for binary vectors. The latter conclusion is somewhat surprising, since the
data structure we obtain works for non-binary vectors as well.

In practice, one may want to use a recent LSH family from [21] that—both in theory
and in practice—is superior to the hyperplane LSH from [52] used in [139].

5.4.2 Symmetric LSH for almost all vectors

Neyshabur and Srebro [139] show that an asymmetric view on LSH for signed IPS is
required. Indeed they show that a symmetric LSH for signed IPS does not exist when
data and query domains are balls of the same radius, while an asymmetric LSH does
exist. (On the other hand, when the data domain is a ball of given radius U and the
query domain is a sphere of same radius, a symmetric LSH does exist.) In this section
we show that even when data and query spaces coincide a nontrivial symmetric LSH
does exist if we disregard the trivial collision probability of 1 when data and query
vectors are identical.

We first show how to reduce signed IPS to the case where data and query vectors
lie on a unit sphere. The reduction is deterministic and maintains inner products up
to an additive error ε for all vectors x, y with x 6= y. We then plug in any Euclidean
LSH for ANN on the sphere, for example the one from [31]. This reduction treats data
and query vectors identically, unlike the one from [139], and thus we are able to obtain
a symmetric LSH.

Assume that vector coordinates are encoded as k-bit numbers, and that data and
query vectors are in the unit ball. The idea is the following. There are at most
N = 2O(dk) possible data vectors and queries. Imagine a collection of N unit vectors
v1, . . . , vN such that for every i 6= j one has |vT

i vj| ≤ ε. Then, it is easy to check that
a map of a vector p to f (p) = (p,

√
1− ‖p‖2 · vp) maps a vector from a unit ball to a

unit sphere and, moreover, for p 6= q one has | f (p)T f (q)− pTq| ≤ ε.
What remains is to construct such a collection of vectors vi. Moreover, our collection

of vectors must be explicit in a strong sense: we should be able to compute vu given a
vector u (after interpreting it as an dk-bit string). Such a constructions are well known,
e.g., in [137] it is shown how to build such vectors using Reed-Solomon codes. The
resulting dimension is O

(
ε−2 log N

)
= O

(
kd/ε2) [117, 137].

5.4. Upper bounds 115

After performing such a reduction we can apply any state-of-the-art LSH (or data
structure for ANN) for `2 norm on a sphere, e.g. from [31, 21], with distance threshold
r2 = 2(1− s + ε), approximation factor c′2 = (1− cs− ε)/r2. If ε is sufficiently small
we get a ρ value close to the one in (5.3). The final result is therefore a symmetric LSH
for symmetric domains that does not provide any collision bound for all pairs (q, p)
with q = p since the guarantees on the inner product fail for these pairs. This LSH can
used for solving signed (cs, s) IPS as a traditional LSH [20], although it is required an
initial step that verifies whether a query vector is in the input set and, if this is the
case, returns the vector q itself if qTq ≥ s.

5.4.3 Unsigned IPS via linear sketches

In this section we propose a linear sketch for unsigned c-MIPS, that can be used for
solving unsigned (cs, s) join. The unsigned c-MIPS is defined as follows: given a set
P ⊂ Rd of n vectors, construct a data structure that efficiently returns, for a given
query vector q, a vector p ∈ P where |pTq| ≥ c(p′Tq), where p′ is the vector in P with
maximum absolute inner product with q. The unsigned (cs, s) join between sets P and
Q can be computed by constructing a data structure for unsigned c-MIPS for vectors
in P and then performs a query for each vector in Q.

Of independent interest, we notice that unsigned c-MIPS can be solved by a data
structure for unsigned (cs, s) search. Let D be a data structure for unsigned (cs, s)
search on the data set P, and suppose we are given a query q and the promise that
there exists p′ ∈ P such that p′Tq > γ. Then, unsigned c-MIPS can be solved by
performing on D the queries q/ci for any 0 ≤ i ≤ dlog1/c(s/γ)e. Intuitively, we
are scaling up the query q until the largest inner product becomes larger than the
threshold s. We notice that γ can be also considered as the smallest inner product that
can be stored according to the numerical precision of the machine.

Our data structure requires Õ
(
dn2−2/κ

)
construction time and Õ

(
dn1−2/κ

)
query

time and provide a c = 1/n1/κ approximation with high probability, for any κ ≥ 2.
This gives an algorithm for unsigned (cs, s) join on two sets of size n requiring time
Õ
(
dn2−2/κ

)
. As shown in Theorem 18, we are unlikely to significant improve further

the approximation factor if the OVP conjecture is true.
First, suppose we are only interested in approximating the value of maxp |qt p| and

not to find the corresponding vector. Then, the problem is equivalent to estimating
‖Aq‖∞, where A is an n× d matrix, whose rows are data vectors. This problem can
be tackled using linear sketches (for an overview see [188, 23]). More specifically, we
use the following result from [18]: for every 2 ≤ κ ≤ ∞ there exists a distribution over
Õ(n1−2/κ)× n matrices Π such that for every x ∈ Rn one has:

Pr
Π
[(1− c)‖x‖κ ≤ ‖Πx‖∞ ≤ (1 + c)‖x‖κ] ≥ 0.99

for a suitable constant 0 < c < 1. Thus, to build a data structure for computing ‖Aq‖∞,
we sample a matrix Π according to the aforementioned result in [18] and compute
the Õ

(
n1−2/κ

)
× d matrix As = ΠA. Then, for every query q, we compute ‖Asq‖∞

in time Õ
(
d · n1−2/κ

)
, which is a O

(
n1/κ

)
-approximation to ‖Aq‖∞ with probability

at least 0.99. Note that we can reduce the probability of error from 0.01 to δ > 0 as

116 Chapter 5. On the Complexity of Inner Product Similarity Join

usual, by building O(log(1/δ)) independent copies of the above data structure and
reporting the median estimate.

We now consider the recovery of the vector that almost maximizes |ptq|. We recover
the index of the desired vector bit by bit. That is, for every bit index 0 ≤ i < log n, we
consider every binary sequence b of length i and build a data structure for the dataset
containing only the vectors in P for which the binary representations of their indexes
have prefix b. Although the number of data structures is n, the total required space
is still Õ

(
dn1−2/κ

)
since each vector appears in only log n data structures. The claim

stated at the beginning follows.

5.5 Conclusion

This paper has investigated different aspects of the complexity of approximate similarity
join with inner product. In particular, we have related the hardness of this problem to
the OVP conjecture. Under some assumptions on c and s, the proposed conditional
lower bounds rule out algorithms for signed/unsigned (cs, s) IPS join running in n2−ε

time, for a constant ε > 0, unless the OVP conjecture is false. Nevertheless, the data
structures in section 5.4 show that it still possible to reach weak subquadratic time,
and even truly subquadratic time for small values of the approximation factor.

The hardness of signed/unsigned IPS holds even for weak approximation factors
when the vector domain is {−1, 1}d. Indeed, the result holds if c ≥ 0 for signed join,

and if c ≥ e−o(
√

log n/ log log n) for unsigned join. When c < 1/nΩ(1), the data structure
for unsigned IPS in section 5.4.3 reaches strongly subquadratic time and this gives
evidence that the constraint on c of the hardness result cannot be significantly relaxed.
On the other hand, when vectors are in the {0, 1}d domain, a stronger assumption
is required on the approximation factor. In this case, the conditional lower bound
holds for c = 1− o(1) and hence it does not rule out truly subquadratic algorithms for
constant approximation. We believe that a different approach is required to show the
hardness of IPS for constant approximation: indeed, the proposed reduction from OVP
to IPS in the {0, 1}d domain strongly relies on the ability to distinguish inner products
smaller than k− 1 and larger than k for some k = ω(1), implying c ≥ 1− o(1). From
an upper bound point of view, the LSH proposed in section 5.4.1 improves upon the
state of the art [168] based on minwise hashing for different values (e.g., when s ≥ d/3
and c ≥ 0.83); however, it still gives weak subquadratic algorithm for signed/unsigned
IPS with constant c. On the other hand, if c = 1/nΩ(1), then the data structure based
on linear search in section 5.4.3 reaches truly subquadratic time. An interesting open
question is therefore to assess if strongly subquadratic time is possible when the
approximation is constant in the {0, 1}d domain.

Chapter 6

High Probability Tensor Sketch
Joint work with: Jakob Bæk Tejs Knudsen

6.1 Introduction

The polynomial method has recently found many great applications in algorithm
design, such as finding orthogonal vectors [14] and gap amplification in nearest
neighbour [179]. Consider the polynomial P(x, y) = ∑i<j<k(xi + yi − xiyi)(xj + yj −
xjyj)(xk + yk − xkyk) which counts the number of triangles in the union between
two graphs, x, y ∈ {0, 1}(n

2), expressed as binary vectors over the edges. Splitting
P into monomials, one may construct functions f , g : {0, 1}(n

2) → Rm such that
P(x, y) = 〈 f (x), g(y)〉, and use these embeddings to solve the ‘most triangles in union’
problem on a database of graphs, using an off the shelf nearest neighbours algorithm.
(See our Applications for more on this.)

Other examples are kernel functions in statistics, such as P(x, y) = exp(−‖x −
y‖2

2) = ∑k≥0(−1)k‖x− y‖2k/k!, the Gaussian Radial Basis Function. The celebrated
‘kernel trick’ has been used in linear methods such as kernel PCA kernel nearest
neighbour or kernel regression to allow detection of nonlinear dependencies between
data without explicitly constructing feature vectors in high dimensional spaces. How-
ever the ‘trick’ requires the computation of the inner product between all pairs of
points, while explicit embeddings scale linearly in the number of points, and have
thus recently experienced a comeback.

While these polynomial expansions often produce prohibitively large vectors,
they can often be reduced by some means, such as the Johnson-Lindenstrauss trans-
form [102]. This in turn creates a strange phenomenon where we first blow up the
dimension only to later squash it back down. It is tempting to look for shortcut to go
straight to the final dimension.

This was the idea of Pagh and Pham [147, 155] with Tensor Sketch. The obser-
vation was that P(x, y) = 〈x, y〉2 = 〈x⊗ x, y⊗ y〉, where x⊗ x is the tensor product
(Kronecker) of x with itself. They further observed that if C and C′ are independent
Count Sketch matrices, then 〈Cx ∗ C′x, Cy ∗ C′y〉 ≈ 〈x, y〉2 while the dimension of
Cx ∗ C′x is much smaller than of x⊗ x. Since the convolution (· ∗ ·) can be computed
in near linear time using the fast Fourier transformation, they could sketch x⊗ x in
basically the time required to sketch x. For a higher order polynomial kernel, replacing

118 Chapter 6. High Probability Tensor Sketch

f (x) = x⊗c with f (x) = C(1)x ∗ · · · ∗ C(c)x thus takes the sketching time from dc to cd.
A huge improvement!

In this paper we improve on the main shortcomings of Tensor Sketch: To preserve
the norm of vectors up to 1± ε with probability 1− δ, it requires embedding into
dimension roughly 3cε−2δ−1. The exponential dependency on c greatly limits the
degree of polynomials that can be embedded, and the linear dependency on δ−1

means we can’t use a standard union bound trick to get e.g. a near neighbour
preserving embedding [97], as could be achieved with the Johnson Lindenstrauss
transform, which embeds into only ε−2 log 1/δ dimensions. We overcome both of
these obstacles, by analyzing a scheme, that with the same embedding time, requires
only c2ε−2(log 1/δ)3 dimensions.

A hugely important idea was introduced by Avron et al. [37]: They proved that a
Tensor Sketch with sufficiently many rows is a Subspace embedding. This allowed
many application that previously were only applied heuristically, such as solving a
regression problem arg minx ‖Ax− y‖2 directly in the reduced space while guarantee-
ing correct results. Using the subspace embeddings, they obtained the fastest known
algorithms for computing an computing an approximate kernel PCA and many other
problems.

However, the weaknesses of Tensor Sketch remained: The exponential dependency
on c meant that the method could only be applied with relatively low degree poly-
nomials. In this paper we show that our High Probability Tensor Sketch is also a
subspace embedding, solving this major roadblock. We also show a second version of
our sketch, which improves upon [37] by allowing an embedding dimension linear in
the subspace dimension, rather than quadratic. In many uses of the subspace method
the embedding dimension becomes larger than the number of points, which means
we can get a quadratic improvement on these applications.

Our approach is to analyze fast family of Johnson Lindenstrauss matrices M
with the further property that M(x⊗ y) = M′x ◦M′′y where ◦ is the Hadamard (or
element-wise) vector product. We also analyze the case where M′ and M′′ are fully
independent Gaussian matrices, and show that we are within a single factor log 1/δ in
embedding dimension while supporting much faster matrix-vector multiplication. The
direct application of this method, M(1)x(1) ◦ · · · ◦M(c), would result in an exponential
dependency on c, but by instead combining vectors as M(1)x(1) ◦ M′(1)(M(2)x(2) ◦
M′(2)(. . . we show that this dependency can be reduced to c2. See also the Technical
Overview below.

6.1.1 Overview

Our main contribution is to answer the questions “Does Tensor Sketch work with high
probability?” and “Does there exist subspace embeddings for higher order polynomial
embeddings?” For both of those questions, the answer is yes!

Theorem 21 (Construction A). There is a distributionM over matrices M ∈ Rm×dc
where

1. |‖Mx‖2 − ‖x‖2| ≤ ε with probability ≥ 1− δ for any x ∈ Rdc
.

2. M can be applied to tensors x(1) ⊗ · · · ⊗ x(c) ∈ Rdc
in time O(c (d log d + m log m)).

6.1. Introduction 119

3. m can be taken to be O(c2ε−2(log 1/δ)(log 1/εδ)2).

4. M can compute fast approximate matrix multiplication: Pr[|‖AT MT MB− ATB‖F| >
ε‖A‖F‖B‖F] < δ.

5. There is an m = O(c2ε−2λ2(log 1/δ)(log 1/εδ)2) such thatM is an (ε, δ)-subspace
embedding. (See definition 24.)

The result matches, up to a single factor log 1/δ the embedding dimension needed
for fully independent Gaussian matrices M and M′, for ‖Mx ◦M′y‖2 to approximate
‖x⊗ y‖2. (See Appendix, Theorem 25.) However, suffering slightly in the embedding
time, we can go all the way down to one:

Theorem 22 (Construction B). There is a distributionM over matrices M ∈ Rm×dc
where

1. |‖Mx‖2 − ‖x‖2| ≤ ε with probability ≥ 1− δ for any x ∈ Rdc
.

2. Matrices M ∼ M can be applied to tensors x(1) ⊗ · · · ⊗ x(c) ∈ Rdc
in time

O(c m min(d, m)).

3. m can be taken to be O(c2ε−2 log 1/δ log2(cε−1 log 1/δ)).

4. There is an m = O(c2ε−2(λ + log 1/δ) log2(cε−1λ log 1/δ)) such that M is an
(ε, δ)-subspace embedding. (See definition 24.)

While the first theorem requires an intricate analysis of the combination of two
Fast-JL matrices, the second one follows nearly directly from our general recursive
construction theorem below:

Theorem 23. Let c > 0 be a positive integer, and Q(1) ∈ Rm×d and Q(i) ∈ Rm×md be
independent random matrices for every i ∈ [c] \ {1}. Define M(k) = Q(k)(M(k−1) ⊗ Id) ∈
Rm×dk

for k ∈ [c], where M(0) = 1 ∈ R. Let t > 0 be a positive integer, and let ki ∈ [c] for
every i ∈ [t]. Then the matrix

M =
⊕
i∈[t]

M(ki) ∈ R
tm×Σi∈[t]d

ki

has the following properties.

1. Let ε ∈ (0, 1) and δ > 0. If Q(i) has (ε/2c, δ/c)-JL property for every i ∈ [c], then M
has (ε, δ)-JL property.

2. If Q(i)x can be evaluated in time T, where x ∈ Rmd, for every i ∈ [c] \ {1}, and
Q(1)y can be evaluated in time T′, where y ∈ Rd, then M(

⊕
i∈[t]

⊗
j∈[ki]

x(i,j)) can be
evaluated in time O(T′t + T ∑i∈[t] ki), where x(i,j) ∈ Rd for every i ∈ [t], j ∈ [ki].

Now the difference between Construction A and Construction B is simply which
matrices Q(1), . . . , Q(c)) that are used as basis for the construction.

120 Chapter 6. High Probability Tensor Sketch

Paper Structure The paper is structured as follows: After the comparison to related
work and preliminaries we give a Technical overview of the sketch. We find it is useful
to have some established notation before this section.

The technical part is split in three: We first show Theorem 23. This gives a
recursive construction, which can be applied to tensors using any of the shelf Johnson-
Lindenstrauss matrix. Combined with the fastest analysis of Fast-JL [112] this gives
our theorem 22.

We proceed to analyze a small change in the construction of Fast-JL matrices,
which allow for very fast application to tensor products. Specifically we show that
the random diagonal matrix can be replaced by the Kronecker product of two smaller
diagonal matrices without losing the JL-property, if the number of rows is increased
slightly. This gives our theorem 21.

Finally in the last section, we show some algorithmic applications of our construc-
tions. For example how to use it to find the two graphs in a database whose union
has the most triangles.

6.1.2 Related work

Work related to sketching of tensors and explicit kernel embeddings is found in fields
ranging from pure mathematics to physics and machine learning. Hence we only try
to compare ourselves with the four most common types we have found.

We focus particularly on the work on subspace embeddings [155, 37], since it is
most directly comparable to ours. An extra entry in this category is [105], which is
currently in review, and which we were made aware of while writing this paper. That
work is in double blind review, but by the time of the final version of this paper, we
should be able to cite it properly.

Subspace embeddings For most applications [37], the subspace dimension, λ, will
be much larger than the input dimension, d, but smaller than the implicit dimension
dc. Hence the size of the sketch, m, will also be assumed to satisfy d << m << dc for
the purposes of stating the results. We will hide constant factors, and log 1/ε, log d,
log m, log c, log λ factors.

Note that we can always go from m down to ≈ ε−2(λ + log 1/δ) by applying
a fast-JL transformation after embedding. This works because the product of two
subspace embeddings is also a subspace embedding, and because fast-JL is a subspace
embedding by the net-argument (see lemma 6.2.3). The embedding dimensions in
the table should thus mainly be seen as a space dependency, rather than the actual
embedding dimension for applications.

6.1. Introduction 121

Reference Embedding dimension, m Embedding time Note

[155, 37] Õ(3c d λ2 δ−1 ε−2) Õ(c (d + m))

Theorem 21 Õ(c2 λ2 (log 1/δ)3 ε−2) Õ(c (d + m))

Theorem 22 Õ(c2 (λ + log 1/δ) ε−2) Õ(c d m)

[105], Theorem 1 Õ(c λ2 δ−1 ε−2) Õ(c (d + m)) Independent work.

[105], Theorem 2 Õ(c6 λ (log 1/δ)5 ε−2) Õ(c (d + m)) Independent work

Some of the results, in particular [155, 37] and [105] Theorem 1 can be applied
faster when the input is sparse. Our results, as well as [105], Theorem 2 can similarly
be optimized for sparse inputs, by preprocessing vectors with an implementation of
Sparse JL [67].

In comparison to the previous result [155, 37] we are clearly better with an expo-
nential improvement in c as well as δ.

Compared to the new work of [105], all four bounds have some region of superiority.
Their first bound of has the best dependency on c, but has an exponential dependency
on log 1/δ. Their second bound has an only linear dependency on d + λ, but has large
polynomial dependencies on c and log 1/δ.

Technically the methods of all five bounds are similar, but some details and much of
the analysis differ. Our results as well as the results of [105] use recursive constructions
to avoid exponential dependency on c, however the shape of the recursion differs.
We show all of our results using the p-moment method, while [105] Theorem 1
and [155, 37] are shown using 2nd-moment analysis. This explains much of why their
dependency on δ is worse.

Approximate Kernel Expansions A classic result by Rahimi and Rect [157] shows
how to compute an embedding for any shift-invariant kernel function k(‖x− y‖2) in
time O(dm). In [119] this is improved to any kernel on the form k(〈x, y〉) and time
O((m + d) log d). This is basically optimal in terms of time and space, however the
method does not handle kernel functions that can’t be specified as a function of the
inner product, and it doesn’t provide subspace embeddings. See also [134] for more
approaches along the same line.

Tensor Sparsification There is also a literature of tensor sparsification based on
sampling [140], however unless the vectors tensored are already very smooth (such
as ±1 vectors), the sampling has to be weighted by the data. This means that these
methods in aren’t applicable in general to the types of problems we consider, where
the tensor usually isn’t known when the sketching function is sampled.

Hyper-plane rounding An alternative approach is to use hyper-plane rounding to
get vectors on the form ±1. Let ρ = 〈x,y〉

‖x‖‖y‖ , then we have 〈sign(Mx), sign(My)〉 =
∑i sign(Mix) sign(Miy) = ∑i Xi , where Xi are independent Rademachers with µ/m =
E[Xi] = 1− 2

π arccos ρ = 2
π ρ+O(ρ3). By tail bounds then Pr[|〈sign(Mx), sign(My)〉−

µ| > εµ] ≤ 2 exp(−min(ε2µ2

2σ2 , 3εµ
2)). Taking m = O(ρ−2ε−2 log 1/δ) then suffices with

122 Chapter 6. High Probability Tensor Sketch

high probability. After this we can simply sample from the tensor product using
simple sample bounds.

The sign-sketch was first brought into the field of data-analysis by [52] and [179]
was the first, in our knowledge, to use it with tensoring. The main issue with this
approach is that it isn’t a linear sketch, which hinders some applications, like subspace
embeddings. It also takes dm time to calculate Mx and My. In general we would like
fast-matrix-multiplication type results.

6.2 Preliminaries

We will use the following notation

k, i, j Indicies

c Tensor order

d Original dimension
(Assumed to be a power of 2.)

dc Implicit dimension

m Sketch dimension

λ Subspace dimension

Λ Subspace of Rdc

M Sketching matrix

M Distribution of sketching matrices

We say f (x) . g(x) if f (x) = O(g(x)). For p ≥ 1 and random variables X ∈ R,
we write ‖X‖p = (E|X|p)1/p. Note that ‖X + Y‖p ≤ ‖X‖p + ‖Y‖p by the Minkowski
Inequality.

Definition 18 (Direct sum). We define the direct sum of two vectors as

x⊕ y =

x

y

 ,

and the direct sum between two matrices as

A⊕ B =

A 0

0 B

 .

6.2. Preliminaries 123

Definition 19 (Kronecker (tensor) product). We define the tensor-product (or Kronecker)
of two matrices as:

A⊗ B =


a1,1B · · · a1,nB

...

am,1B · · · am,nB

 ,

and in particular of two vectors: x⊗ y = [x1y1, x1y2, . . . , xnyn]T. Taking the tensor-product
of a vector with itself, we get the tensor-powers:

x⊗k = x⊗ · · · ⊗ x︸ ︷︷ ︸
k times

.

The Kronecker product has the useful mixed-pruduct property when the sizes
match up:

(A⊗ B)(C⊗ D) = (AC)⊗ (BD)

We note in particular the vector variants (I ⊗ B)(x⊗ y) = x⊗ By and 〈x⊗ y, z⊗
t〉 = 〈x, y〉〈z, t〉.

Definition 20 (Hadamard product). Also sometimes known as the ‘element-wise product’:

x ◦ y = [x1y1, x2y2, . . . , xnyn]
T .

Taking the Hadamard product with itself gives the Hadamard-power:

x◦k = x ◦ · · · ◦ x︸ ︷︷ ︸
k times

= [xk
1, xk

2, . . . , xk
n]

T.

Definitions

Definition 21 (JL-moment property). We say a distribution over random matrices M ∈
Rm×d has the (ε, δ)-JL-moment property, when

‖‖Mx‖2
2 − 1‖p ≤ εδ1/p

for all p > 1 and x ∈ Rd, ‖x‖ = 1.

Note that by Markov’s inequality, the JL-moment-property implies E‖Mx‖2 = ‖x‖2
and that taking m = O(ε−2 log 1/δ) suffices to have Pr[|‖Mx‖2 − ‖x‖2| > ε] < δ for
any x ∈ Rd. (This is sometimes known as the Distributional-JL property.)

Definition 22 ((ε, δ)-Approximate Matrix Multiplication). We say a distribution over
random matrices M ∈ Rk×d has the (ε, δ)-Approximate Matrix Multiplication property if for
any matrices A, B with proper dimensions,

‖‖AT MT MB− ATB‖F‖p

≤ εδ1/p‖A‖F‖B‖F.

124 Chapter 6. High Probability Tensor Sketch

Lemma 6.2.1 (Shown in [188]). Any distribution that has the (ε, δ)-JL-moment-property
has the (3ε, δ)-Approximate Matrix Multiplication property.

We note that the factor of 3 on ε can be removed by combining the analysis in [188]
with Appendix Lemma 6.7.3.

Definition 23 (ε-Subspace embedding). M ∈ Rk×D is a subspace embedding for Λ ⊆ RD

if for any x ∈ Λ,

|‖Mx‖2 − ‖x‖2| ≤ ε.

Definition 24 ((λ, ε)-Oblivious Subspace Embedding). A distribution,M, over Rm×D

matrices is a (D, λ)-Oblivious Subspace Embedding if for any linear subspace, Λ ⊆ RD, of
dimension λ, M ∼M is an ε-subspace embedding for Λ with probability at least 1− δ.

Lemma 6.2.2. Any distribution that has the (ε/(3λ), δ)-JL-moment-property is a (λ, ε)-
oblivious subspace embedding.

Proof. Let U ∈ Rλ×m be orthonormal such that UTU = I, it then suffices (by [188]) to
show ‖UT MT MU − I‖ ≤ ε.

From lemma 6.2.1 we have that ‖UT MT MU − I‖ ≤ 3εδ1/p‖U‖2
F = 3εδ1/pλ.

Lemma 6.2.3. There is a C > 0, such that any distribution that has the (ε, δeCλ)-JL-moment-
property is a (λ, ε)-oblivious subspace embedding.

Proof. For any λ-dimensional subspace, Λ, there exists an ε-net T ⊆ Λ ∩ Sd−1 of size
Cd such that if M preserves the norm of every x ∈ T then M preserves all of Λ up to
1 + ε. See [188] for details.

Lemma 6.2.4 (Khintchine’s inequality [87]). Let p ≥ 1, x ∈ Rd, and σRd be independent
Rademacher ±1 random variables. Then

∥∥ d

∑
i=1

σixi
∥∥

p .
√

p‖x‖2.

6.3 Technical Overview

The main component of any tensor sketch is a matrix M : Rm×d1d2 such that ‖Mx‖2 ≈
‖x‖2 and which an be applied efficiently (faster than md1d2) to simple tensors x =
x(1) ⊗ x(2), where x(1) ∈ Rd1 , x(2) ∈ Rd2 .

If x(1) and x(2) are ±1 vectors, sampling from x works well and can be done without
actually constructing x. For this reason a natural general sketch is S(M(1)x(1) ⊗
M(2)x(2)), where M(1) and M(2) are random rotations.

The original Tensor Sketch did F−1(FC(1)x ◦ FC(2)x), where C(1) and C(2) are
Count Sketch matrices. At first sight this may look somewhat different, but we
can ignore the orthonormal F−1, and then we have M(1)x(1) ◦M(2)x(2) which is just
sampling the diagonal of M(1)x(1) ⊗M(2)x(2). Since M(1) and M(2) are independent,
sampling the diagonal works as well as any other subset of the same size.

Since Tensor Sketch only used 2nd moment analysis, the natural technical ques-
tion is “how well does M(1)x(1) ◦ M(2)x(2) really work?” when M(1) and M(2)

6.4. The High Probability Tensor Sketch 125

can be anything. In Theorem 25 we show that an embedding dimension of
m = Θ(ε−2 log 1/δ + ε−1(log 1/δ)2 is both sufficient and necessary for (sub)-gaussian
matrices, which we conjecture is optimal across all distributions.

Sub-gaussian matrices however still take md time to evaluate, so our tensor sketch
would still take m(d1 + d2) time in total. We really want M(1) and M(2) to have fast
matrix-vector multiplication. It is thus natural to analyze the above scheme where
M(1) and M(2) are Fast Johnson Lindenstrauss matrices ala [13, 112]. We do this in
Section 6.5 and show that m = ε−2(log 1/δ)(log 1/εδ)2 suffices. For ε not too small,
this matches our suggested optimum by one log 1/δ factor.

The final challenge is to scale up to larger tensors than order 2. Our Lemma 6.5.1
shows and exponential dependency: m = ε−2(log 1/δ)(log 1/εδ)c, which would
be rather unfortunate. Luckily it turns out, that by continuously ‘squashing’ the
dimension back down to ε−2(log 1/δ)(log 1/εδ)2, we can avoid this explosion.

While we usually think of applying our sketching matrix to simple tensors, we
always analyze everything assuming the input has full rank. This adds some extra
difficulty to the analysis, but it is worth it, since by showing that our matrix has the so
called JL-moment-property, we get that it is also a subspace embedding for free, by
Lemma 6.2.2 and Lemma 6.2.3.

6.4 The High Probability Tensor Sketch

In this section we will prove Theorem 23 which is the backbone of our theorems.
Theorem 22 will follow as an easy corollary, while Theorem 21 is completed in the
next section.

Before we show the full theorem we will consider a slightly easier construction.
Given independent random matrices Q(2), . . . , Q(c) ∈ Rm×dm, from a distribution
to be discussed later, and Q(1) ∈ Rm×d, we define M(0) = 1 ∈ R and recursively
M(k) = Q(k)(M(k−1)⊗ Id) for k ∈ [c]. The goal of this section is to show that Mk has JL-
and related properties when the Q(i)s have, and that M(k) can be evaluated efficiently
on simple tensors, x(1) ⊗ . . .⊗ x(k) ∈ Rdk

, for k ∈ [c].
First we show a rather simple fact which will prove to be quite powerful.

Lemma 6.4.1. Let ε ∈ (0, 1) and δ > 0. If P ∈ Rm1×d1 and Q ∈ Rm2×d2 are two matrices
with (ε, δ)-JL moment property, then P ⊕ Q ∈ R(m1+m2)×(d1+d2) has (ε, δ)-JL moment
property.

Proof. Let x ∈ Rd1+d2 and choose y ∈ Rd1 and z ∈ Rd2 such that x = y⊕ z. Now using
the triangle inequality and JL moment property, we get that∥∥∥∥(P⊕Q)x

∥∥2
2 −

∥∥x
∥∥2

2

∥∥
p ≤

∥∥∥∥Py
∥∥2

2 −
∥∥y
∥∥2

2

∥∥
p +

∥∥∥∥Qz
∥∥2

2 −
∥∥z
∥∥2

2

∥∥
p

≤ εδ1/p∥∥y
∥∥2

2 + εδ1/p∥∥z
∥∥2

2

= εδ1/p∥∥x
∥∥2

2,

since ‖y‖2 + ‖z‖2 = ‖y⊕ z‖2 by disjointness.

126 Chapter 6. High Probability Tensor Sketch

An easy consequence of this lemma is that for any matrix T, I`⊗ T has (ε, δ)-JL mo-
ment property when T has (ε, δ)-JL moment property, since I` ⊗Q = Q⊕Q⊕ . . .⊕Q︸ ︷︷ ︸

` times

.

Similarly, Q⊗ I` has (ε, δ)-JL moment property, since you can obtain Q⊗ I` by
reordering the rows of I`⊗Q, which trivially does not change the JL moment property.

It is now easy to show that M(k) has JL-property when Q(1), . . . , Q(k) has JL-
property for k ∈ [c].

Lemma 6.4.2. Let ε ∈ (0, 1) and δ > 0. If Q(1), . . . , Q(c) has the (ε/2c, δ/c)-JL property,
then M(k) has (k/cε, k/cδ)-jl property for every k ∈ [c].

Proof. Let k ∈ [c] be fixed. We note that an alternative way of expressing M(k) is as
follows:

M(k) = Q(k)(Q(k−1) ⊗ Id)(Q(k−2) ⊗ Id2) . . . (Q(1) ⊗ Idk−1)

Let x ∈ Rdk
be any vector. Define x(i) = (Q(i) ⊗ Idk−i)x(i−1) for i ∈ [k] and x(0) = x.

Since Q(i) has (ε/2k, δ/k)-JL property then Q(i) ⊗ Idi has (ε/2c, δ/c)-JL property by
the previous discussion, hence Pr

[∣∣∣∥∥x(i)
∥∥2

2 −
∥∥x(i)

∥∥2
2

∣∣∣ ≥ ε/2c
∥∥x(i)

∥∥2
2

]
≤ δ/c. Now a

simple union bound give us that

1− k/cε ≤ (1− ε/2c)k ≤
∣∣∣∥∥Mx

∥∥2
2 −

∥∥x
∥∥2

2

∣∣∣ ≤ (1 + ε/2c)k ≤ 1 + k/cε

with probability at least 1− k/cδ, which finishes the proof.

Corollary 6. Let ε ∈ (0, 1). If Q(1), . . . , Q(c) has the (ε/(2λc), δ/c)-JL property, then M(k)

is a λ-subspace embedding.

Proof. This follows from lemma 6.2.2.

Note that if Q(i)x, where x ∈ Rdk, can be evaluated in time T for every i ∈ [c] \ {1},
and Q(1)y, where y ∈ Rd, also can be evaluated in time T′, then M(k)z, where
z ∈ Rdk

, can be evaluated in time T′dk−1 + T ∑k−2
i=0 di = T′dk−1 + T(dk−1− 1)/(d− 1) =

Θ(T′dk−1 + Tdk−2). Meanwhile, if x ∈ Rdk
is on the form x(1) ⊗ . . .⊗ x(k), we have

M(k)x = Q(k)(M(k−1)(x(1) ⊗ . . . x(k−1)) ⊗ x(k)). Now an easy induction argument
shows that this allows evaluation in time O(T′ + Tk), which is exponentially faster.

Using this construction it now becomes easy to sketch polynomials. More precisely,
let t ∈ Z>0, ki ∈ [c] for every i ∈ [t], then the matrix M =

⊕
i∈[t] M(ki) has (ε, δ)-JL

property and can be evaluated at the vector x =
⊕

i∈[t]
⊗

j∈[ki]
x(i,j) in time O(T′t +

T ∑i∈[t] ki), where x(i,j) ∈ Rd for every i ∈ [t], j ∈ [ki].
This discussion proves Theorem 23. Note that if we apply a Fast Johnson Linden-

strauss Transform between every direct sum we can obtain an output dimension of
O(m).

Example 1. Often it is possible to get an even faster evaluation time if the input has even
more structure. For example consider the matrix M =

⊕
i∈[c] M(i) and the vector z =⊕

i∈[c]
⊗

j∈[i] x(j), where x(j) ∈ Rd for every j ∈ [c]. Then Mz can be evaluated in time
O(T′ + cT) by exploiting the fact that

M(k)(
⊗
j∈[k]

x(j)) = Q(k)(M(k−1)(
⊗

j∈[k−1]

x(j))⊗ x(k)) ,

6.5. Fast Constructions 127

so we can use the previous calculations.

As promised we now get the proof of Theorem 22 by choosing Q(1), . . . , Q(c) to be
Fast Johnson Lindenstrauss Matrices. Using the analysis from Krahmer et al. [112]
they can be evaluated in time O(md log md) and if we set m = Õ(c2 log(1/δ)/ε2) then
Q(1), . . . , Q(c) has (ε/2c, δ/c)-JL property. Now Theorem 23 give us the result.

6.5 Fast Constructions

The purpose of this section is to show the following lemma:

Lemma 6.5.1. Let c ∈ Z>0, and (D(i))i∈[c] ∈ ∏i∈[c] Rdi×di be independent diagonal matrices
with independent Rademacher variables. Define d = ∏i∈[c] di and D =

⊗
i∈[c] Di ∈ Rd×d.

Let S ∈ Rm×d be an independent sampling matrix which samples exactly one coordinate per
row. Let x ∈ Rd be any vector and p ≥ 1, then∥∥ 1

m

∥∥SHDx
∥∥2

2 −
∥∥x
∥∥2

2

∥∥
p .
√

p (p + log m)c/2∥∥x
∥∥2

2/
√

m + p (p + log m)c∥∥x
∥∥2

2/m.

Setting m = O(ε−2 log 1/δ(log 1/εδ)c) thus suffices for SHD to have the (ε, δ)-JL-
moment-property. This then gives (by lemma 6.2.1 and 6.2.2) that SHD is a subspace
embedding.

We note that SHD can be applied efficiently to simple tensors by the relation:

SHd1d2(D(1) ⊗ D(2))(x⊗ y) = (S(1) ⊗ S(2))(Hd1 ⊗ Hd2)(D(1) ⊗ D(2))(x⊗ y)

= S(1)Hd1 D(1)x ◦ S(2)Hd2 D(2)y,

where Hn is the size n Hadamard matrix and S(1) and S(2) are independent sampling
matrices. Combining this fact with the construction in the previous section gives
Theorem 21.

The rest of this section is devoted to proving Lemma 6.5.1. We first show two
technical lemmas, which seem like they could be useful for many other things.

Lemma 6.5.2. Let p ≥ 1, c ∈ Z>0, and (σ(i))i∈[c] ∈ ∏i∈[c] Rdi be independent Rademacher
vectors. Let ai0,...,ic−1 ∈ R for every ij ∈ [dj] and every j ∈ [c], then∥∥ ∑

i1∈[d1],...,ic∈[dc]
∏
j∈[c]

σ
(j)
ij

ai0,...,ic−1

∥∥
p . pc/2(∑

i1∈[d1],...,ic∈[dc]

a2
i0,...,ic−1

)1/2
= pc/2‖a‖HS.

Proof. The proof will be by induction on c. For c = 1 then the result is just Khintchine’s
inequality (Lemma 6.2.4). So assume that the result is true for every value up to c.

128 Chapter 6. High Probability Tensor Sketch

Using the induction hypothesis we get that∥∥ ∑
i1∈[d1],

...,ic∈[dc]

∏
j∈[c]

σ
(j)
ij

ai1,...,ic
∥∥

p =
∥∥ ∑

i1∈[d1],
...,ic−1∈[dc−1]

∏
j∈[c−1]

σ
(j)
ij

(
∑

ic∈[dc]

σ
(c)
ic ai1,...,ic

)∥∥
p

. p(c−1)/2∥∥(∑
i1∈[d1],

...,ic−1∈[dc−1]

(
∑

ic∈[dc]

σ
(c)
ic ai1,...,ic

)2)1/2∥∥
p (I.H.)

= p(c−1)/2∥∥ ∑
i1∈[d1],

...,ic−1∈[dc−1]

(
∑

ic∈[dc]

σ
(c)
ic ai1,...,ic

)2∥∥1/2
p/2

≤ p(c−1)/2(∑
i1∈[d1],

...,ic−1∈[dc−1]

∥∥(∑
ic∈[dc]

σ
(c)
ic ai1,...,ic

)2∥∥
p/2

)1/2 (Triangle)

= p(c−1)/2(∑
i1∈[d1],

...,ic−1∈[dc−1]

∥∥ ∑
ic∈[dc]

σ
(c)
ic ai1,...,ic

∥∥2
p

)1/2

. pc/2(∑
i1∈[d1],...,ic∈[dc]

a2
i1,...,ic

)1/2 (Khintchine)

where the last inequality is by using Khintchine’s inequality. Plugging this into the
previous inequality finishes the induction step and hence the proof.

The next lemma we nee is a type of Chernoff bound for pth moments.

Lemma 6.5.3. Let p ≥ 2 and X0, . . . , Xk−1 be independent non-negative random variables
with p-moment, then

∥∥ ∑
i∈[k]

(Xi − E[Xi])
∥∥

p .
√

p
√

∑
i∈[k]

E[Xi]
∥∥max

i∈[k]
Xi
∥∥1/2

p + p
∥∥max

i∈[k]
Xi
∥∥

p

Proof.∥∥ ∑
i∈[k]

(Xi − E[Xi])
∥∥

p .
∥∥ ∑

i∈[k]
σiXi

∥∥
p (Symmetrization)

.
√

p
∥∥√∑

i∈[k]
X2

i

∥∥
p (Khintchine’s inequality)

=
√

p
∥∥ ∑

i∈[k]
X2

i
∥∥1/2

p/2

≤ √p
∥∥max Xi

∥∥1/2
p

∥∥ ∑
i∈[k]

Xi
∥∥1/2

p (Hölder’s inequality)

≤ √p
∥∥max Xi

∥∥1/2
p

√
∑

i∈[k]
E[Xi]

+
√

p
∥∥max Xi

∥∥1/2
p

∥∥ ∑
i∈[k]

(Xi − E[Xi])
∥∥1/2

p (Triangle inequality)

6.6. Applications 129

Now let C =
∥∥∑i∈[k](Xi − E[Xi])

∥∥1/2
p , B =

√
∑i∈[k] E[Xi], and A =

√
p
∥∥max Xi

∥∥1/2
p .

then we have shown C2 ≤ A(B + C). That implies C is smaller than the largest of the
roots of the quadratic. Solving this quadratic inequality gives C2 . AB + A2 which is
the result.

We can finally go ahead and prove Lemma 6.5.1.

Proof. For every i ∈ [m] we let Si be the random variable that says which coordinate
the i’th row of S samples, and we define the random variable Zi = Mixi = HSi Dxi. We
note that since the variables (Si)i∈[m] are independent then the variables (Zi)i∈[m] are
conditionally independent given D, that is, if we fix D then (Zi)i∈[m] are independent.

Using Lemma 6.5.3 we get that∥∥ 1
m ∑

i∈[m]

Z2
i −

∥∥x
∥∥2

2

∥∥
p .
√

p
(1

m ∑
i∈[m]

E
[

Z2
i

∣∣∣ D
])1/2∥∥max

i∈[m]

1
m Z2

i
∥∥1/2

p + p
∥∥max

i∈[m]

1
m Z2

i
∥∥

p

(6.1)

It follows easily that E
[
Z2

i

∣∣ D
]
=
∥∥x
∥∥2

2 from the fact that
∥∥HDx

∥∥2
2 = d

∥∥x
∥∥2

2, hence(1
m ∑i∈[m] E

[
Z2

i

∣∣ D
])1/2

=
∥∥x
∥∥

2. Now we just need to bound
∥∥maxi∈[m]

1
m Z2

i

∥∥
p =

1
m

∥∥maxi∈[m] Z2
i

∥∥
p. First we note that

∥∥Z2
i
∥∥

p =
∥∥(HSi Dxi)

2∥∥
p . pc∥∥x

∥∥2
2

by Khintchine’s inequality. Let q = max {p, log m}, then we get that∥∥max
i∈[m]

Z2
i
∥∥

p ≤
∥∥max

i∈[m]
Z2

i
∥∥

q ≤
(

∑
i∈[m]

∥∥Z2
i
∥∥q

q

)1/q ≤ m1/qqc∥∥x
∥∥2

2

Now since q ≥ log m then m1/q ≤ 2 so
∥∥maxi∈[m] Z2

i

∥∥
p . qc

∥∥x
∥∥2

2 ≤ (p + log m)c
∥∥x
∥∥2

2.
Plugging this into 6.1 finishes the proof.

6.6 Applications

The classic application of Tensor Sketching is compact bilinear pooling (or multilinear).
This simply corresponds to expanding x ans x⊗2 (bilinear pooling) and then hashing
back to a smaller size (compact). First discussed in [83] which showed how to do back-
propagration through a tensor-sketch layer. Then applied to all many applications such
as visual convolutional models [122], question answering [82], visual reasoning [101],
video classification [130].

These results are usually given without any particular guarantees, but we can also
use polynomial embeddings for concrete algorithms using the following lemma:

130 Chapter 6. High Probability Tensor Sketch

6.6.1 Sketching Polynomials

Theorem 24. Given any degree c polynomial, P(z) = ∑c
i=0 aizi, there are a pair of embeddings

f , g : Rd → Rm, such that for any x, y ∈ Rd, the inner product

〈 f (x), g(y)〉 = (1± ε)P(〈x, y〉)

with probability at least 1 − δ. Using Construction A we set m =
O(c2ε−2(log 1/δ)(log 1/εδ)2), and f (x) and g(y) can be computed in O(c(d log d +
m log m)) time. Using Construction B we set m = Õ(c2ε−2(log 1/δ)), and f (x) and g(y)
can be computed in O(cm min(d, m)) time.

Proof. We note that

P(〈x, y〉) =
c

∑
i=0

ai 〈x, y〉i =
c

∑
i=0

〈
aix⊗i, y⊗i

〉
=

〈
c⊕

i=0

aix⊗i,
c⊕

i=0

y⊗i

〉
.

So using Theorem 23 together with Construction A and Construction B give the
result.

We note that the output dimension m in the theorem can be improved by applying
a Fast Johnson Lindenstrauss Transform in the end.

Example 2 (Explicit Gaussian Kernel). Say we want 〈 f (x), g(y)〉 ≈ exp(−〈x, y〉2) =

∑c
k=0(−1)k〈x, y〉2k/k! + O(〈x, y〉2c+1/c!). Then using Theorem 24 we can obtain
〈 f (x), g(y)〉 = (1 ± ε)∑c

k=0(−1)k〈x, y〉2k/k!, hence get an approximation of ε +
O(〈x, y〉2c+1/c!) with probability 1− δ, using O(c(d log d + m log m)) time where m =
O(c3ε−2(log 1/δ)(log 1/εδ)2).

6.6.2 Embeddings

Lemma 6.6.1 (Symmetric Polynomials). Given any degree polynomial,
P(x1, . . . , xd, y1, . . . , yd) with k monomials we can make an embedding f , g : Rd → Rm such
that

E〈 f (x), g(y)〉 = ∑
π

P(xπ(1), . . . , xπ(d), yπ(1), . . . , yπ(d)).

f (x) and g(y) can be computed in time k 4∆ sketching operations, where ∆ is the maximum
combined degree of a monomial. (E.g. 4 for x2

1y1y2.)
For x and y boolean, we get ‖ f (x)‖2

2 ≤ k(‖x‖2
2 + κ − 1)!/(‖x‖2

2 − 1)! ≤ k(‖x‖2
2 + κ −

1)κ. where κ is the numer of different indicies in a monomial. E.g. for x1y1x2 it is 2.

Proof. See the Appendix Section 6.7.2.

Example 3 (Triangle counting). Say you have a database of graphs, G, seen as binary vectors
in {0, 1}e. Given a query graph, G, you want to find G′ ∈ G such that the number of triangles
in G ∪ G′ is maximized.

We construct the polynomial P(x, y) = (x1 + y1 − x1y1)(x2 + y2 − x2y2)(x3 + y3 −
x3y3) which is 1 exactly when x ∪ u has a triangle on edges 1, 2, 3. The maximum number of

6.7. Appendix 131

different indicies is κ = 3. The maximum number of triangles (with ordering) is 6(d,3
≈)d

3. We
have ‖ f (x)‖2‖g(x)‖ ≈ (d + 3)3, so to get precision within 1% of the maximum number, we
need to set ε < 0.01d3/(d + 3)3.

Since our approximation works with high probability, we can take a union bound and plug
the embedded vectors into the standard data structure of [25] or others.

6.6.3 Oblivious Subspace Embeddings

In [188] the authors show a number of applications of polynomial kernels in oblivious
subspace embeddings. They also show that the original tensor sketch [155] is an
oblivious subspace embedding when the sketch matches the size described in the
introduction. It is shown how each of:

1. Approximate Kernel PCA and Low Rank Approximation,

2. Regularizing Learning With the Polynomial Kernel,

3. Approximate Kernel Principal Component Regression,

4. Approximate Kernel Canonical Correlation Analysis,

can be computed with state of the art performance.
However, each of the applications encounter an exponential dependency on c. They

also inherit the tensor-sketch linear dependency on the inverse error probability. Our
sketch improves each of these aspects directly black box.

6.7 Appendix

6.7.1 Subgaussian construction

Before stating the theorem, we not the following matrix product:

Definition 25 (Face-splitting product). Defined between to matrices as the Kronecker-
product between pairs of rows:

C • D =


C1 ⊗ D1

C2 ⊗ D2

. . .

Cn ⊗ Dn

 .

Face-splitting product has the relation (A • B)(x⊗ y) = Ax ◦ By.

Theorem 25 (Subgaussian). Let T, M ∈ Rm×d have iid. sub-gaussian entries, then
‖‖ 1√

m (T •M)x‖2
2 − ‖x‖2

2‖p ≤
√

p/m + pq/m, where q = max(p, m).

132 Chapter 6. High Probability Tensor Sketch

This immediately implies that for m = Ω(ε−2 log 1/δ + ε−1(log 1/δ)(log 1/εδ)),
T •M has the JL-moment property.

We note that the analysis is basically optimal. Assume M and T were iid. Gaussian
matrices and x = e′⊗2

1 were a simple tensor with a single 1 entry. Then |‖(M •
T)x‖2

2 − ‖x‖2
2| = |‖Mx′ ◦ Tx′‖2

2 − 1| ∼ |(gg′)2 − 1| for g, g′ ∈ R iid. Gaussians.
Now Pr[(gg′)2 > (1 + ε)] ≈ exp(−min(ε,

√
ε)), thus requiring m = Ω(ε−2 log 1/δ +

ε−1(log 1/δ)2) matching our bound up to a log 1/ε.

Proof. Let Q = T •M ∈ Rn×ab.

‖(T •M)x‖2
2 = ∑

k
((T •M)kx)2

= ∑
k
(TU(i))

2
k,k

where U(i) = (XMT)(i) = (MiX)T, when x is seen as a d× d matrix.
We then have sub-gaussians:

E‖U(i)‖2
2 = E‖MiX‖2

2 = ∑
k

E(MiX(k))
2 = ∑

k
‖X(k)‖2 = ‖X‖2

F = 1

‖‖U(i)‖2
2‖p ≤ ‖‖MiXT‖2

2 − 1‖+ 1 ≤ √p‖XTX‖F + p‖XTX‖+ 1 ≤ p

‖∑
k
‖U(k)‖4

2‖p ≤
√

pk + k + pq2,

The last bound followed from independence and bounded variance of the ‖U(k)‖s. It
is possible to go without this assumption though, suffering a small loss in the final
dimension.

We bound

‖(T •M)x‖2
2/k− ‖x‖2

2‖p ≤ ‖∑
k
(TkU(k))

2 − ‖U‖2
F‖p/k (6.2)

+ ‖‖U‖2
F/k− ‖x‖2

2‖p. (6.3)

Bounding eq. (6.3) follows simply from the JL property of M. Bounding eq. (6.2) is a
bit trickier, and we use the Hanson-Wright inequality:

‖∑
k
(TkU(k))

2 − ‖U‖2
F‖p ≤

∥∥√p
(
∑
k
‖U(k)U

T
(k)‖

2
F
)1/2

+ p max
k
‖U(k)U

T
(k)‖

∥∥
p

≤
∥∥√p

(
∑
k
‖U(k)‖4

2
)1/2

+ p max
k
‖U(k)‖2

2
∥∥

p

≤ √p
∥∥∑

k
‖U(k)‖4

2
∥∥1/2

p/2 + pq. (6.4)

Here we used the maximum trick from the next section to bound the max term.

A short aside: It would be sweet to split

‖∑
k
‖U(k)‖4

2‖p/2 ≤ ‖max ‖U(k)‖2
2 ∑ ‖U(k)‖2

2‖p/2

≤ ‖max ‖U(k)‖2
2‖p ‖∑ ‖U(k)‖2

2‖p

≤ p ‖‖U‖2
F‖p,

6.7. Appendix 133

but unfortunately the second factor is1
√

pk + p , which means we end up
with p(pk)1/4 term in eq. (6.4), which is too much. (p3/4k1/4 would have
been tolerable.) We’ll show how to shave this factor p on the

√
pk term.

We instead have to work directly on the fourth powers. We use triangle and Bernstein

‖∑
k
‖U(k)‖4

2‖p/2 ≤
∥∥∑

k
‖U(k)‖4

2 − E‖U(k)‖4
2
∥∥

p/2 + ∑
k

E‖U(k)‖4
2

≤ √p
(
∑
k
(E‖U(k)‖4

2)
2)1/2

+ p‖max ‖U(k)‖4
2‖p/2 + ∑

k
‖‖U(k)‖2

2‖2
2

≤ √p
(
∑
k
‖‖U(k)‖2

2‖4
4
)1/2

+ p‖max ‖U(k)‖2
2‖2

p + 4k

≤ √p
(
∑
k

44)1/2
+ p max ‖‖U(k)‖2

2‖2
q + k

≤
√

pk + pq2 + k.

Now plugging into eq. (6.2) and eq. (6.4) we get

‖(T •M)x‖2
2/k− ‖x‖2

2‖p ≤ (
√

p
√√

pk + pq2 + k + pq)/k +
√

p/k + p/k

≤
√

p/k + pq/k.

Finally we can normalize and plug into the power-Markov inequality:

Pr[‖(T •M)x‖2
2/k− ‖x‖2

2‖p ≥ ε] ≤ max(
√

p/k, pq/k)pε−p,

which gives that we must take

k = ε−2 log 1/δ + ε−1(log 1/δ)2.

Proofs of the lemmas:

Lemma 6.7.1 (Max trick). Let q = max(p, log k), then

‖max Xi‖p ≤ e max ‖EXi‖q.

Proof.

‖max Xi‖p ≤ ‖max Xi‖q

= (E max Xq
i)

1/q

≤ (∑ EXq
i)

1/q

≤ (k max EXq
i)

1/q

≤ e(max EXq
i)

1/q

= e max ‖EXi‖q.

1‖‖U‖2
F‖p = ‖∑j MjXTXMT

j ‖p ≤
√

pk‖X‖2
F + p‖X‖2.

134 Chapter 6. High Probability Tensor Sketch

Lemma 6.7.2 (p-norm Bernstein). For independent variables Xi,

‖∑
i

Xi − E ∑
i

Xi‖p ≤
√

p
(
∑

i
EX2

i
)1/2

+ p ‖max
i

Xi‖p.

Proof.

‖∑
i

Xi − E ∑
i

Xi‖p ≤ ‖∑
i

giXi‖p (See notes)

≤ √p ‖∑
i

X2
i ‖

1/2
p/2

≤ √p
(
E ∑

i
X2

i
)1/2

+
√

p ‖∑
i

X2
i − E ∑

i
X2

i ‖
1/2
p/2 (Triangle)

≤ √pσ +
√

p ‖∑
i

X2
i − E ∑

i
X2

i ‖
1/2
p/2

≤ √pσ +
√

p ‖∑
i

giX2
i ‖

1/2
p/2

≤ √pσ +
√

p ‖max
i

Xi ∑
i

giXi‖1/2
p/2

≤ √pσ +
√

p ‖max
i

Xi‖1/2
p ‖∑

i
giXi‖1/2

p . (Cauchy)

Now let Q = ‖∑i giXi‖1/2
p and K = ‖maxi Xi‖p, and we have Q2 ≤ √pσ +

√
pKQ.

Because it’s a quadratic form, Q is upper bounded by the larger root of Q2−
√

pKQ−√
pσ. By calculation, Q2 ≤ √pσ + pK, which is the theorem.

6.7.2 Proof of polynomial lemma

Proof of Lemma 6.6.1

Proof. For each monomial αxSyT of P, where S and T are multisets : [d]→N, define
[x Sy T]x and [x Sy T]y be two vectors in R` for some ` such that

〈[x Sy T]x, [x Sy T]y〉 = ∑
π

xπSyπT = ∑
π

d

∏
i=1

xSπi
i yTπi

i . (6.5)

Then f (x) and g(y) are simple the sketched concatenation of α[x Sy T]x and [x Sy T]y
vectors. (Note that since we get ε‖ f (x)‖2‖g(y)‖2 error, it doesn’t matter where we put
alpha, or if we split it between f and g.)

We can let [x ∅y∅]x = [x ∅y∅]y = [1] ∈ R1 (the single 1 vector) and then define
recursively:

[x Sy T]x = x◦Si ⊗ [x S\iy T\i]x ⊕−
⊕

j∈(S∪T)\i
[x S\i+{j:Si}y T\i+{j:Ti}]x

[x Sy T]y = y◦Ti ⊗ [x S\iy T\i]y ⊕
⊕

j∈(S∪T)\i
[x S\i+{j:Si}y T\i+{j:Ti}]y,

where i is any index in S∪ T. Here we let S \ i be S with i removed, and S + {j : Si} be
S with Si added to Sj. It is clear from Theorem 23 that this construction gives eq. (6.5).

6.7. Appendix 135

We note that we can compute the norms by ‖[x ∅y∅]‖2
2 = 1 and

‖[x Sy T]x‖2
2 = ‖x◦Si‖2

2 · ‖[x S\iy T\i]x‖2
2 + ∑

j∈(S∪T)\i
‖[x S\i+{j:Si}y T\i+{j:Ti}]x‖2

2

and equivalently for y. It does however not seem simple to get a closed form in the
general case. In the simple case where x and y are {0, 1}d vectors we can however
show the simple formula:

‖[x Sy T]x‖2
2 =

(‖x‖2
2 − 1 + |S ∪ T|)!
(‖x‖2

2 − 1)!
≤ (‖x‖2

2 − 1 + |S ∪ T|)|S∪T|

and equivalently for y, (Here S and T are normal sets.)
Since there are only 4|S ∪ T| many states of [x Sy T] the running time is only that

many sketching operations.

6.7.3 Better Approximate Matrix Multiplication

Lemma 6.7.3. For any x, y ∈ Rd, if S has the (ε, δ)-JL-moment-property, (‖‖Sx‖2 −
‖x‖2‖p ≤ εδ1/p‖x‖2), then also

‖(Sx)T(Sy)− xTy‖p ≤ εδ1/p‖x‖2‖y‖2

Proof. We can assume by linearity of the norms that ‖x‖2 = ‖y‖2 = 1. We then use
that ‖x− y‖2

2 = ‖x‖2
2 + ‖y‖2

2 − 2xTy and ‖x + y‖2
2 = ‖x‖2

2 + ‖y‖2
2 + 2xTy.

‖(Sx)T(Sy)− xTy‖p = ‖‖Sx + Sy‖2
2 − ‖x + y‖2

2 − ‖Sx− Sy‖2
2 + ‖x− y‖2

2‖p/4

≤ (‖‖S(x + y)‖2
2 − ‖x + y‖2

2‖p + ‖‖S(x− y)‖2
2 − ‖x− y‖2

2‖p)/4

≤ εδ1/p(‖x + y‖2
2 + ‖x− y‖2

2)/4 (JL property)

= εδ1/p(‖x‖2
2 + ‖y‖2

2)/2

≤ εδ1/p.

Combined with the argument in [188] this gives that the JL-moment-property implies
Approximate Matrix Multiplication without a factor 3 on ε.

Bibliography

[1] Amir Abboud, Aviad Rubinstein, and Ryan Williams. Distributed PCP theorems
for hardness of approximation in P. In 2017 IEEE 58th Annual Symposium on
Foundations of Computer Science (FOCS), pages 25–36. IEEE, 2017.

[2] Amir Abboud, Ryan Williams, and Huacheng Yu. More Applications of the
Polynomial Method to Algorithm Design. In Proc. 26th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 218–230, 2015.

[3] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply
strong lower bounds for dynamic problems. In 2014 IEEE 55th Annual Symposium
on Foundations of Computer Science, pages 434–443. IEEE, 2014.

[4] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences
of faster alignment of sequences. In International Colloquium on Automata, Lan-
guages, and Programming, pages 39–51. Springer, 2014.

[5] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions: with
formulas, graphs, and mathematical tables. Courier Corporation, 1964.

[6] Panagiotis Achlioptas, Bernhard Schölkopf, and Karsten Borgwardt. Two-locus
association mapping in subquadratic time. In Proc. 17th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD), pages 726–734.
ACM, 2011.

[7] Pankaj K Agarwal and Jeff Erickson. Geometric range searching and its relatives.
Contemporary Mathematics 223, pages 1–56, 1999.

[8] Parag Agrawal, Arvind Arasu, and Raghav Kaushik. On indexing error-tolerant
set containment. In Proceedings of the 2010 ACM SIGMOD International Conference
on Management of data, pages 927–938. ACM, 2010.

[9] Thomas Ahle. It is NP-hard to verify an LSF on the sphere. Unpublished
manuscript, 2017.

[10] Thomas D Ahle, Martin Aumüller, and Rasmus Pagh. Parameter-free Locality
Sensitive Hashing for Spherical Range Reporting. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 239–256.
SIAM, 2017.

138 Bibliography

[11] Thomas Dybdahl Ahle. Optimal las vegas locality sensitive data structures.
In Annual Symposium on Foundations of Computer Science - Proceedings, volume
2017-Octob, pages 938–949, 2017. doi:10.1109/FOCS.2017.91.

[12] Thomas Dybdahl Ahle, Rasmus Pagh, Ilya Razenshteyn, and Francesco Silvestri.
On the complexity of inner product similarity join. In Proceedings of the 35th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages
151–164. ACM, 2016.

[13] Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast
Johnson-Lindenstrauss transform. In Proceedings of the thirty-eighth annual ACM
symposium on Theory of computing, pages 557–563. ACM, 2006.

[14] Josh Alman, Timothy M Chan, and Ryan Williams. Polynomial representations
of threshold functions and algorithmic applications. In 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science (FOCS), pages 467–476. IEEE, 2016.

[15] Josh Alman and Ryan Williams. Probabilistic Polynomials and Hamming Nearest
Neighbors. In Proceedings of 56th Symposium on Foundations of Computer Science
(FOCS), pages 136–150, 2015.

[16] Noga Alon, Dana Moshkovitz, and Shmuel Safra. Algorithmic construction of
sets for k-restrictions. ACM Transactions on Algorithms (TALG), 2(2):153–177, 2006.

[17] Alexandr Andoni. Nearest Neighbor Search: the Old, the New, and the Impossible.
PhD thesis, MIT, 2009.

[18] Alexandr Andoni. HIGH FREQUENCY MOMENTS VIA MAX-STABILITY
Alexandr Andoni. From Duplicate 1 (High frequency moments via max-
stability - Andoni, Alexandr) Unpublished manuscript From Duplicate 2 (HIGH
FREQUENCY MOMENTS VIA MAX-STABILITY Alexandr Andoni - Andoni,
Alexandr) Unpublished manuscript„ 2017.

[19] Alexandr Andoni and Piotr Indyk. {E2LSH}, User Manual. Website, 2005.

[20] Alexandr Andoni and Piotr Indyk. Near-optimal Hashing Algorithms for
Approximate Nearest Neighbor in High Dimensions. Commun. ACM, 51(1):117–
122, 2008.

[21] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig
Schmidt. Practical and optimal LSH for angular distance. In Advances in Neural
Information Processing Systems, pages 1225–1233, 2015.

[22] Alexandr Andoni, Piotr Indyk, Huy L. Nguyen, and Ilya P. Razenshteyn. Be-
yond locality-sensitive hashing. In Proceedings of the Twenty-Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA,
January 5-7, 2014, pages 1018–1028, 2014. URL: https://doi.org/10.1137/1.
9781611973402.76, doi:10.1137/1.9781611973402.76.

http://dx.doi.org/10.1109/FOCS.2017.91
https://doi.org/10.1137/1.9781611973402.76
https://doi.org/10.1137/1.9781611973402.76
http://dx.doi.org/10.1137/1.9781611973402.76

Bibliography 139

[23] Alexandr Andoni, Robert Krauthgamer, and Ilya P Razenshteyn. Sketching and
Embedding are Equivalent for Norms. In Proc. 47th {ACM} on Symposium on
Theory of Computing, (STOC), pages 479–488, 2015.

[24] Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten.
Lower Bounds on Time-Space Trade-Offs for Approximate Near Neighbors.
arXiv:1605.02701, 2016.

[25] Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten.
Optimal hashing-based time-space trade-offs for approximate near neighbors.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 47–66. Society for Industrial and Applied Mathematics, 2017.

[26] Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten.
Optimal hashing-based time-space trade-offs for approximate near neighbors.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 47–66. SIAM, 2017.

[27] Alexandr Andoni, Assaf Naor, Aleksandar Nikolov, Ilya Razenshteyn, and Erik
Waingarten. Data-dependent hashing via nonlinear spectral gaps. In Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 787–
800. ACM, 2018.

[28] Alexandr Andoni, Assaf Naor, Aleksandar Nikolov, Ilya Razenshteyn, and Erik
Waingarten. Hölder homeomorphisms and approximate nearest neighbors. In
2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
pages 159–169. IEEE, 2018.

[29] Alexandr Andoni, Ilya Razenshteyn, and Negev Shekel Nosatzki. Lsh forest:
Practical algorithms made theoretical. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 67–78. SIAM, 2017.

[30] Alexandr Andoni, Ilya Razenshteyn, and Negev Shekel Nosatzki. {LSH} Forest:
{P}ractical Algorithms Made Theoretical. In To appear in Proceedings of 28th
{ACM-SIAM} Symposium on Discrete Algorithms (SODA), 2017.

[31] Alexandr Andoni and Ilya P. Razenshteyn. Optimal data-dependent hashing for
approximate near neighbors. In Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17,
2015, pages 793–801, 2015. URL: https://doi.org/10.1145/2746539.2746553,
doi:10.1145/2746539.2746553.

[32] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. Efficient Exact Set-
Similarity Joins. In Proc. International Conference on Very Large Data Bases (VLDB),
pages 918–929, 2006.

[33] Sunil Arya, Guilherme D Da Fonseca, and David M Mount. A unified approach
to approximate proximity searching. In Proceedings of 18th European Symposium
on Algorithms (ESA), pages 374–385. Springer, 2010.

https://doi.org/10.1145/2746539.2746553
http://dx.doi.org/10.1145/2746539.2746553

140 Bibliography

[34] Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Silverman, and An-
gela Y Wu. An optimal algorithm for approximate nearest neighbor searching
fixed dimensions. Journal of the ACM (JACM), 45(6):891–923, 1998.

[35] Nikolaus Augsten and Michael H Böhlen. Similarity joins in relational database
systems. Synthesis Lectures on Data Management, 5(5):1–124, 2013.

[36] Martin Aumüller, Tobias Christiani, Rasmus Pagh, and Francesco Silvestri.
Distance-sensitive hashing. In Proceedings of the 37th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, Houston, TX, USA, June 10-15,
2018, pages 89–104, 2018. URL: https://doi.org/10.1145/3196959.3196976,
doi:10.1145/3196959.3196976.

[37] Haim Avron, Huy L Nguyen, and David P Woodruff. Subspace Embeddings for
the Polynomial Kernel. In Advances in Neural Information Processing Systems 27:
Annual Conference on Neural Information Processing Systems 2014, December 8-13
2014, Montreal, Quebec, Canada, pages 2258–2266, 2014. URL: http://papers.
nips.cc/paper/5240-subspace-embeddings-for-the-polynomial-kernel.

[38] Yoram Bachrach, Yehuda Finkelstein, Ran Gilad-Bachrach, Liran Katzir, Noam
Koenigstein, Nir Nice, and Ulrich Paquet. Speeding Up the Xbox Recommender
System Using a Euclidean Transformation for Inner-product Spaces. In Proc. 8th
ACM Conference on Recommender Systems, pages 257–264, 2014.

[39] Arturs Backurs and Piotr Indyk. Edit Distance Cannot Be Computed in Strongly
Subquadratic Time (Unless SETH is False). In Proc. 47th ACM on Symposium on
Theory of Computing (STOC), pages 51–58, 2015.

[40] Bahman Bahmani, Ashish Goel, and Rajendra Shinde. Efficient distributed
locality sensitive hashing. In Proc. ACM International Conference on Information
and Knowledge Management (CIKM), pages 2174–2178, 2012.

[41] Mayank Bawa, Tyson Condie, and Prasanna Ganesan. LSH Forest: Self-tuning
Indexes for Similarity Search. In Proceedings of the 14th International Conference
on World Wide Web, pages 651–660. ACM, 2005. URL: http://doi.acm.org/10.
1145/1060745.1060840, doi:10.1145/1060745.1060840.

[42] Roberto J Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling up all pairs
similarity search. In Proc. International Conference on World Wide Web (WWW),
pages 131–140, 2007.

[43] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in
nearest neighbor searching with applications to lattice sieving. In Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages
10–24. SIAM, 2016.

[44] Iddo Ben-Ari and Keith Conrad. Maclaurin’s Inequality and a Generalized
Bernoulli Inequality. Mathematics Magazine, 87(1):14–24, 2014.

[45] Vidmantas Bentkus. A Lyapunov-type bound in Rd. Theory of Probability & Its
Applications, 49(2):311–323, 2005.

https://doi.org/10.1145/3196959.3196976
http://dx.doi.org/10.1145/3196959.3196976
http://papers.nips.cc/paper/5240-subspace-embeddings-for-the-polynomial-kernel
http://papers.nips.cc/paper/5240-subspace-embeddings-for-the-polynomial-kernel
http://doi.acm.org/10.1145/1060745.1060840
http://doi.acm.org/10.1145/1060745.1060840
http://dx.doi.org/10.1145/1060745.1060840

Bibliography 141

[46] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, 1975.

[47] Andrei Z Broder. On the resemblance and containment of documents. In
Compression and Complexity of Sequences 1997. Proceedings, pages 21–29. IEEE,
1997.

[48] Andrei Z Broder, Steven C Glassman, Mark S Manasse, and Geoffrey Zweig.
Syntactic clustering of the web. Computer Networks and ISDN Systems, 29(8-
13):1157–1166, 1997.

[49] Timothy M Chan. Orthogonal range searching in moderate dimensions: kd trees
and range trees strike back. In 33rd International Symposium on Computational
Geometry (SoCG 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[50] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent
items in data streams. In International Colloquium on Automata, Languages, and
Programming, pages 693–703. Springer, 2002.

[51] Moses Charikar, Piotr Indyk, and Rina Panigrahy. New algorithms for subset
query, partial match, orthogonal range searching, and related problems. In
International Colloquium on Automata, Languages, and Programming, pages 451–462.
Springer, 2002.

[52] Moses S Charikar. Similarity estimation techniques from rounding algorithms.
In Proceedings of the thiry-fourth annual ACM Symposium on Theory of Computing,
pages 380–388. ACM, 2002.

[53] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. A Primitive Operator
for Similarity Joins in Data Cleaning. In Proc.22nd International Conference on
Data Engineering (ICDE), page 5, 2006.

[54] Bernard Chazelle, Ding Liu, and Avner Magen. Approximate range searching
in higher dimension. Comput. Geom., 39(1):24–29, 2008.

[55] Lijie Chen. On the hardness of approximate and exact (bichromatic) maximum
inner product. Electronic Colloquium on Computational Complexity (ECCC), 25:26,
2018. URL: https://eccc.weizmann.ac.il/report/2018/026.

[56] Lijie Chen and Ryan Williams. An equivalence class for orthogonal vectors. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 21–40. SIAM, 2019.

[57] Yun Chen and Jignesh M Patel. Efficient evaluation of all-nearest-neighbor
queries. In Proc. International Conference on Data Engineering (ICDE), pages 1056–
1065, 2007.

[58] Flavio Chierichetti and Ravi Kumar. LSH-preserving functions and their appli-
cations. J. ACM, 62(5):33, 2015.

https://eccc.weizmann.ac.il/report/2018/026

142 Bibliography

[59] Flavio Chierichetti and Ravi Kumar. Lsh-preserving functions and their applica-
tions. Journal of the ACM (JACM), 62(5):33, 2015.

[60] Seung-Seok Choi, Sung-Hyuk Cha, and Charles C Tappert. A survey of binary
similarity and distance measures. Journal of Systemics, Cybernetics and Informatics,
8(1):43–48, 2010.

[61] Tobias Christiani. A framework for similarity search with space-time tradeoffs
using locality-sensitive filtering. In Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 31–46. SIAM, 2017.

[62] Tobias Christiani. Fast Locality-Sensitive Hashing Frameworks for Approximate
Near Neighbor Search. arXiv preprint arXiv:1708.07586, 2017.

[63] Tobias Christiani and Rasmus Pagh. Set similarity search beyond minhash. In Pro-
ceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017, pages 1094–1107, 2017. URL: https:
//doi.org/10.1145/3055399.3055443, doi:10.1145/3055399.3055443.

[64] Tobias Christiani, Rasmus Pagh, and Mikkel Thorup. Confirmation Sampling
for Exact Nearest Neighbor Search. arXiv preprint arXiv:1812.02603, 2018.

[65] Kenneth L Clarkson. A randomized algorithm for closest-point queries. SIAM
Journal on Computing, 17(4):830–847, 1988.

[66] Edith Cohen, Mayur Datar, Shinji Fujiwara, Aristides Gionis, Piotr Indyk, Rajeev
Motwani, Jeffrey D Ullman, and Cheng Yang. Finding Interesting Associations
without Support Pruning. {IEEE} Trans. Knowl. Data Eng., 13(1):64–78, 2001.

[67] Michael B Cohen, T S Jayram, and Jelani Nelson. Simple analyses of the sparse
Johnson-Lindenstrauss transform. In 1st Symposium on Simplicity in Algorithms
(SOSA 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[68] Charles J Colbourn and Jeffrey H Dinitz. Handbook of combinatorial designs. CRC
press, 2006.

[69] Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary matching
and indexing with errors and don’t cares. In Proceedings of the thirty-sixth annual
ACM symposium on Theory of computing, pages 91–100. ACM, 2004.

[70] Ryan R Curtin, Alexander G Gray, and Parikshit Ram. Fast Exact Max-Kernel
Search. In Proc. 13th SIAM International Conference on Data Mining (SDM), pages
1–9, 2013.

[71] Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Mikkel Thorup. Fast similarity
sketching. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pages 663–671. IEEE, 2017.

[72] Abhinandan Das, Mayur Datar, Ashutosh Garg, and ShyamSundar Rajaram.
Google news personalization: scalable online collaborative filtering. In Proc.
International Conference on World Wide Web (WWW), pages 271–280, 2007.

https://doi.org/10.1145/3055399.3055443
https://doi.org/10.1145/3055399.3055443
http://dx.doi.org/10.1145/3055399.3055443

Bibliography 143

[73] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the
twentieth annual symposium on Computational geometry, pages 253–262. ACM, 2004.

[74] Thomas Dean, Mark Ruzon, Mark Segal, Jonathon Shlens, Sudheendra Vijaya-
narasimhan, and Jay Yagnik. Fast, Accurate Detection of 100,000 Object Classes
on a Single Machine. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition, Washington, DC, USA, 2013.

[75] Ian H Dinwoodie. Large Deviations Techniques and Applications (Amir Dembo
and Ofer Zeitouni). {SIAM} Review, 36(2):303–304, 1994. URL: https://doi.
org/10.1137/1036078, doi:10.1137/1036078.

[76] Wei Dong, Zhe Wang, William Josephson, Moses Charikar, and Kai Li. Model-
ing {LSH} for performance tuning. In Proceedings of 17th {ACM} Conference on
Information and Knowledge Management (CIKM), pages 669–678. ACM, 2008.

[77] Moshe Dubiner. Bucketing coding and information theory for the statistical
high-dimensional nearest-neighbor problem. IEEE Transactions on Information
Theory, 56(8):4166–4179, 2010.

[78] Peter Elias. List decoding for noisy channels. In 1957-IRE WESCON Convention
Record, Pt. Citeseer, 1957.

[79] Leonhard Euler. De progressionibus harmonicis observationes. Commentarii
academiae scientiarum Petropolitanae, 7(1734-35):150–156, 1740.

[80] P F Felzenszwalb, R B Girshick, D McAllester, and D Ramanan. Object Detection
with Discriminatively Trained Part-Based Models. IEEE Transactions on Pattern
Analysis and Machine Intelligence,, 32(9):1627–1645, 2010.

[81] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyper-
loglog: the analysis of a near-optimal cardinality estimation algorithm. In
Discrete Mathematics and Theoretical Computer Science, pages 137–156. Discrete
Mathematics and Theoretical Computer Science, 2007.

[82] Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, and
Marcus Rohrbach. Multimodal compact bilinear pooling for visual question
answering and visual grounding. EMNLP, pages 457–468, 2016. URL: http:
//aclweb.org/anthology/D/D16/D16-1044.pdf.

[83] Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor Darrell. Compact bilinear
pooling. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 317–326, 2016.

[84] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity Search in High
Dimensions via Hashing. In Proceedings of the 25th International Conference on
Very Large Data Bases, pages 518–529. Morgan Kaufmann Publishers Inc., 1999.

https://doi.org/10.1137/1036078
https://doi.org/10.1137/1036078
http://dx.doi.org/10.1137/1036078
http://aclweb.org/anthology/D/D16/D16-1044.pdf
http://aclweb.org/anthology/D/D16/D16-1044.pdf

144 Bibliography

[85] Ashish Goel and Pankaj Gupta. Small subset queries and bloom filters using
ternary associative memories, with applications. ACM SIGMETRICS Performance
Evaluation Review, 38(1):143–154, 2010.

[86] Mayank Goswami, Rasmus Pagh, Francesco Silvestri, and Johan Sivertsen. Dis-
tance Sensitive Bloom filters without false negatives. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 257–269.
SIAM, 2017.

[87] Uffe Haagerup and Magdalena Musat. On the best constants in noncommutative
Khintchine-type inequalities. Journal of Functional Analysis, 250(2):588–624, 2007.

[88] Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate Nearest
Neighbor: Towards Removing the Curse of Dimensionality. Theory of Computing,
8(1):321–350, 2012.

[89] Sariel Har-Peled and Sepideh Mahabadi. Proximity in the Age of Distraction:
Robust Approximate Nearest Neighbor Search. CoRR, abs/1511.0, 2015.

[90] Wassily Hoeffding. Probability inequalities for sums of bounded random vari-
ables. Journal of the American statistical association, 58(301):13–30, 1963.

[91] Piotr Indyk. Dimensionality reduction techniques for proximity problems. In
Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms,
pages 371–378. Society for Industrial and Applied Mathematics, 2000.

[92] Piotr Indyk. High-dimensional computational geometry. PhD thesis, Stanford
University, 2000.

[93] Piotr Indyk. On approximate nearest neighbors under ell-infty norm. Journal of
Computer and System Sciences, 63(4):627–638, 2001.

[94] Piotr Indyk. Uncertainty principles, extractors, and explicit embeddings of l2
into l1. In Proceedings of the thirty-ninth annual ACM symposium on Theory of
computing, pages 615–620. ACM, 2007.

[95] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing, pages 604–613. ACM, 1998.

[96] Piotr Indyk and Rajeev Motwani. Approximate Nearest Neighbors: {T}owards
Removing the Curse of Dimensionality. In Proceedings of 30th Annual {ACM}
Symposium on the Theory of Computing (STOC), pages 604–613, 1998.

[97] Piotr Indyk and Assaf Naor. Nearest-neighbor-preserving embeddings. ACM
Transactions on Algorithms (TALG), 3(3):31, 2007.

[98] Edwin H Jacox and Hanan Samet. Metric space similarity joins. ACM Transactions
on Database Systems (TODS), 33(2):7, 2008.

Bibliography 145

[99] Yu Jiang, Dong Deng, Jiannan Wang, Guoliang Li, and Jianhua Feng. Efficient
parallel partition-based algorithms for similarity search and join with edit
distance constraints. In Proc. Joint EDBT/ICDT Workshops, pages 341–348. ACM,
2013.

[100] Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. Cutting-plane
Training of Structural SVMs. Mach. Learn., 77(1):27–59, 2009.

[101] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei,
C Lawrence Zitnick, and Ross Girshick. Clevr: A diagnostic dataset for compo-
sitional language and elementary visual reasoning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2901–2910, 2017.

[102] William B Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings
into a Hilbert space. Contemporary mathematics, 26(189-206):1, 1984.

[103] Michael Kapralov. Smooth Tradeoffs between Insert and Query Complexity in
Nearest Neighbor Search. In Proceedings of 34th {ACM} Symposium on Principles
of Database Systems (PODS), pages 329–342, 2015.

[104] Michael Kapralov. Smooth tradeoffs between insert and query complexity in
nearest neighbor search. In Proceedings of the 34th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pages 329–342. ACM, 2015.

[105] Michael Kapralov, Rasmus Pagh, Ameya Velingker, David Woodruff, and Amir
Zandieh. Sketching High-Degree Polynomial Kernels. 2019.

[106] Matta Karppa, Petteri Kaski, and Jukka Kohonen. A faster subquadratic algo-
rithm for finding outlier correlations. In Proc. 27th ACM-SIAM Symposium on
Discrete Algorithms (SODA16), 2016.

[107] Matti Karppa, Petteri Kaski, and Jukka Kohonen. A faster subquadratic algo-
rithm for finding outlier correlations. ACM Transactions on Algorithms (TALG),
14(3):31, 2018.

[108] Matti Karppa, Petteri Kaski, Jukka Kohonen, and Padraig Ó Catháin. Explicit cor-
relation amplifiers for finding outlier correlations in deterministic subquadratic
time. Proceedings of the 24th European Symposium Of Algorithms, 2016.

[109] Donald E Knuth. Combinatorial Algorithms: Part 2, {The Art of Computer
Programming}, vol. 4A, 2011.

[110] Noam Koenigstein, Parikshit Ram, and Yuval Shavitt. Efficient Retrieval of
Recommendations in a Matrix Factorization Framework. In Proc. 21st ACM
International Conference on Information and Knowledge Management (CIKM), pages
535–544, 2012.

[111] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix Factorization Techniques
for Recommender Systems. Computer, 42(8):30–37, 2009.

146 Bibliography

[112] Felix Krahmer and Rachel Ward. New and improved Johnson–Lindenstrauss
embeddings via the restricted isometry property. SIAM Journal on Mathematical
Analysis, 43(3):1269–1281, 2011.

[113] Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Efficient search for
approximate nearest neighbor in high dimensional spaces. SIAM Journal on
Computing, 30(2):457–474, 2000.

[114] Thijs Laarhoven. Search problems in cryptography. PhD thesis, PhD thesis, Eind-
hoven University of Technology, 2015. http://www. thijs. com˜. . . , 2015.

[115] Thijs Laarhoven. Tradeoffs for nearest neighbors on the sphere. arXiv preprint
arXiv:1511.07527, 2015.

[116] Thijs Laarhoven. Hypercube {LSH} for Approximate near Neighbors. In
42nd International Symposium on Mathematical Foundations of Computer Science,
{MFCS} 2017, August 21-25, 2017 - Aalborg, Denmark, pages 7:1—-7:20, 2017.
URL: https://doi.org/10.4230/LIPIcs.MFCS.2017.7, doi:10.4230/LIPIcs.
MFCS.2017.7.

[117] Kasper Green Larsen and Jelani Nelson. The Johnson-Lindenstrauss lemma is
optimal for linear dimensionality reduction. CoRR, abs/1411.2, 2014.

[118] Kasper Green Larsen and Jelani Nelson. Optimality of the Johnson-Lindenstrauss
lemma. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pages 633–638. IEEE, 2017.

[119] Quoc Viet Le, Tamás Sarlós, and Alexander Johannes Smola. Fastfood: Ap-
proximate Kernel Expansions in Loglinear Time. CoRR, abs/1408.3, 2014. URL:
http://arxiv.org/abs/1408.3060, arXiv:1408.3060.

[120] Dongjoo Lee, Jaehui Park, Junho Shim, and Sang-goo Lee. An efficient similarity
join algorithm with cosine similarity predicate. In Database and Expert Systems
Applications, pages 422–436. Springer, 2010.

[121] Guoliang Li, Dong Deng, Jiannan Wang, and Jianhua Feng. Pass-join: A partition-
based method for similarity joins. Proc. VLDB Endowment, 5(3):253–264, 2011.

[122] Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. Bilinear cnn mod-
els for fine-grained visual recognition. In Proceedings of the IEEE international
conference on computer vision, pages 1449–1457, 2015.

[123] Yucheng Low and Alice X Zheng. Fast top-k similarity queries via matrix
compression. In Proc. ACM International Conference on Information and Knowledge
Management (CIKM)KM, pages 2070–2074. ACM, 2012.

[124] Jiaheng Lu, Chunbin Lin, Wei Wang, Chen Li, and Haiyong Wang. String
similarity measures and joins with synonyms. In Proc. 2013 ACM SIGMOD
International Conference on Management of Data, pages 373–384, 2013.

https://doi.org/10.4230/LIPIcs.MFCS.2017.7
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.7
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.7
http://arxiv.org/abs/1408.3060
http://arxiv.org/abs/1408.3060

Bibliography 147

[125] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Multi-probe
{LSH}: Efficient Indexing for High-dimensional Similarity Search. In Proceedings
of 33rd International Conference on Very Large Data Bases (VLDB), pages 950–961.
VLDB Endowment, 2007.

[126] Harry G Mairson. The program complexity of searching a table. In Foundations
of Computer Science, 1983., 24th Annual Symposium on, pages 40–47. IEEE, 1983.

[127] Jir\’\i Matousek. Geometric Range Searching. {ACM} Comput. Surv., 26(4):421–
461, 1994.

[128] Stefan Meiser. Point location in arrangements of hyperplanes. Information and
Computation, 106(2):286–303, 1993.

[129] Sergey Melnik and Hector Garcia-Molina. Adaptive algorithms for set contain-
ment joins. ACM Transactions on Database Systems (TODS), 28(1):56–99, 2003.

[130] Antoine Miech, Ivan Laptev, and Josef Sivic. Learnable pooling with context
gating for video classification. arXiv preprint arXiv:1706.06905, 2017.

[131] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomized
algorithms and probabilistic analysis. Cambridge university press, 2005.

[132] Rajeev Motwani, Assaf Naor, and Rina Panigrahi. Lower Bounds on Locality
Sensitive Hashing. In Proc. 22nd Symposium on Computational Geometry (SoCS),
pages 154–157, 2006.

[133] Rajeev Motwani, Assaf Naor, and Rina Panigrahi. Lower bounds on local-
ity sensitive hashing. In Proceedings of the twenty-second annual symposium on
Computational geometry, pages 154–157. ACM, 2006.

[134] Cameron Musco and Christopher Musco. Recursive sampling for the nystrom
method. In Advances in Neural Information Processing Systems, pages 3833–3845,
2017.

[135] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient construc-
tions and applications. SIAM journal on computing, 22(4):838–856, 1993.

[136] Moni Naor, Leonard J Schulman, and Aravind Srinivasan. Splitters and near-
optimal derandomization. In Foundations of Computer Science, 1995. Proceedings.,
36th Annual Symposium on, pages 182–191. IEEE, 1995.

[137] Jelani Nelson, Huy L Nguyen, and David P Woodruff. On deterministic sketch-
ing and streaming for sparse recovery and norm estimation. Linear Algebra and
its Applications, 441(0):152–167, 2014.

[138] Behnam Neyshabur and Nathan Srebro. On Symmetric and Asymmetric LSHs
for Inner Product Search. In International Conference on Machine Learning, pages
1926–1934, 2015.

148 Bibliography

[139] Behnam Neyshabur and Nathan Srebro. On symmetric and asymmetric lshs
for inner product search. In Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages 1926–1934, 2015.
URL: http://jmlr.org/proceedings/papers/v37/neyshabur15.html.

[140] Nam H Nguyen, Petros Drineas, and Trac D Tran. Tensor sparsification via
a bound on the spectral norm of random tensors. Information and Inference: A
Journal of the IMA, 4(3):195–229, 2015.

[141] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

[142] Ryan O’Donnell, Yi Wu, and Yuan Zhou. Optimal lower bounds for locality-
sensitive hashing (except when q is tiny). TOCT, 6(1):5:1–5:13, 2014. URL:
https://doi.org/10.1145/2578221, doi:10.1145/2578221.

[143] Krzysztof Oleszkiewicz. On a nonsymmetric version of the Khinchine-Kahane
inequality. In Stochastic inequalities and applications, pages 157–168. Springer,
2003.

[144] Mark H Overmars and Jan van Leeuwen. Worst-case optimal insertion and
deletion methods for decomposable searching problems. Information Processing
Letters, 12(4):168–173, 1981.

[145] Ryan O’Donnell, Yi Wu, and Yuan Zhou. Optimal lower bounds for locality-
sensitive hashing (except when q is tiny). ACM Transactions on Computation
Theory (TOCT), 6(1):5, 2014.

[146] Andrzej Pacuk, Piotr Sankowski, Karol Wegrzycki, and Piotr Wygocki. Locality-
sensitive hashing without false negatives for lp. In International Computing and
Combinatorics Conference, pages 105–118. Springer, 2016.

[147] Rasmus Pagh. Compressed matrix multiplication. ACM Transactions on Computa-
tion Theory (TOCT), 5(3):9, 2013.

[148] Rasmus Pagh. Locality-sensitive hashing without false negatives. In Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1–9. SIAM, 2016.

[149] Rasmus Pagh, Ninh Pham, Francesco Silvestri, and Morten Stöckel. {I/O}-
Efficient Similarity Join. In Proc. 23rd European Symposium on Algorithms (ESA),
pages 941–952, 2015.

[150] Rasmus Pagh, Francesco Silvestri, Johan Sivertsen, and Matthew Skala. Approxi-
mate Furthest Neighbor in High Dimensions. In Proc. 8th International Conference
on Similarity Search and Applications (SISAP), volume 9371 of LNCS, pages 3–14,
2015.

[151] Rina Panigrahy. Entropy based nearest neighbor search in high dimensions. In
Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm,
pages 1186–1195. Society for Industrial and Applied Mathematics, 2006.

http://jmlr.org/proceedings/papers/v37/neyshabur15.html
https://doi.org/10.1145/2578221
http://dx.doi.org/10.1145/2578221

Bibliography 149

[152] Rina Panigrahy, Kunal Talwar, and Udi Wieder. A geometric approach to lower
bounds for approximate near-neighbor search and partial match. In 2008 49th
Annual IEEE Symposium on Foundations of Computer Science, pages 414–423. IEEE,
2008.

[153] Valentin Petrov. Sums of independent random variables, volume 82. Springer Science
& Business Media, 2012.

[154] Ninh Pham. Hybrid {LSH:} Faster Near Neighbors Reporting in High-
dimensional Space. In Proceedings of the 20th International Conference on Ex-
tending Database Technology, {EDBT} 2017, Venice, Italy, March 21-24, 2017.,
pages 454–457, 2017. URL: https://doi.org/10.5441/002/edbt.2017.43,
doi:10.5441/002/edbt.2017.43.

[155] Ninh Pham and Rasmus Pagh. Fast and scalable polynomial kernels via explicit
feature maps. In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 239–247. ACM, 2013.

[156] Ninh Pham and Rasmus Pagh. Scalability and total recall with fast CoveringLSH.
In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management, pages 1109–1118. ACM, 2016.

[157] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel ma-
chines. In Advances in neural information processing systems, pages 1177–1184,
2008.

[158] Parikshit Ram and Alexander G Gray. Maximum Inner-product Search Using
Cone Trees. In Proc. 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pages 931–939, 2012.

[159] Karthikeyan Ramasamy, Jignesh M. Patel, Jeffrey F. Naughton, and Raghav
Kaushik. Set containment joins: The good, the bad and the ugly. In VLDB, 2000.

[160] Demitri Nava Raul Castro Fernandez, Jisoo Min and Samuel Madden. Lazo:
A cardinality-based method for coupled estimation of jaccard similarity and
containment. In ICDE, 2019.

[161] Ilya P. Razenshteyn. High-dimensional similarity search and sketching: algorithms
and hardness. PhD thesis, Massachusetts Institute of Technology, Cambridge,
USA, 2017. URL: http://hdl.handle.net/1721.1/113934.

[162] Ronald L Rivest. Partial-match retrieval algorithms. SIAM Journal on Computing,
5(1):19–50, 1976.

[163] Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms
for the diameter and radius of sparse graphs. In Proceedings of the forty-fifth
annual ACM symposium on Theory of computing, pages 515–524. ACM, 2013.

[164] Aviad Rubinstein. Hardness of approximate nearest neighbor search. In Proceed-
ings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages
1260–1268. ACM, 2018.

https://doi.org/10.5441/002/edbt.2017.43
http://dx.doi.org/10.5441/002/edbt.2017.43
http://hdl.handle.net/1721.1/113934

150 Bibliography

[165] Venu Satuluri and Srinivasan Parthasarathy. Bayesian locality sensitive hashing
for fast similarity search. Proc. VLDB Endowment, 5(5):430–441, 2012.

[166] Anshumali Shrivastava and Ping Li. Asymmetric LSH (ALSH) for sublinear
time maximum inner product search (MIPS). In Advances in Neural Information
Processing Systems, pages 2321–2329, 2014.

[167] Anshumali Shrivastava and Ping Li. Asymmetric LSH (ALSH) for sub-
linear time maximum inner product search (MIPS). In Advances in
Neural Information Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, December 8-13 2014, Montreal, Que-
bec, Canada, pages 2321–2329, 2014. URL: http://papers.nips.cc/paper/
5329-asymmetric-lsh-alsh-for-sublinear-time-maximum-inner-product-search-mips.

[168] Anshumali Shrivastava and Ping Li. Asymmetric Minwise Hashing for Indexing
Binary Inner Products and Set Containment. In Proc. 24th International Conference
on World Wide Web (WWW), pages 981–991, 2015.

[169] Alexander Sidorenko. What we know and what we do not know about Turán
numbers. Graphs and Combinatorics, 11(2):179–199, 1995.

[170] Yasin N Silva, Walid G Aref, and Mohamed H Ali. The similarity join database
operator. In Proc. International Conference on Data Engineering (ICDE), pages
892–903. IEEE, 2010.

[171] Malcolm Slaney, Yury Lifshits, and Junfeng He. Optimal Parameters for Locality-
Sensitive Hashing. Proceedings of the {IEEE}, 100(9):2604–2623, 2012.

[172] Ryan Spring and Anshumali Shrivastava. Scalable and sustainable deep learning
via randomized hashing. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 445–454. ACM, 2017.

[173] Nathan Srebro, Jason D M Rennie, and Tommi S Jaakola. Maximum-Margin
Matrix Factorization. In Advances in Neural Information Processing Systems 17,
pages 1329–1336. MIT Press, 2005.

[174] Nathan Srebro and Adi Shraibman. Rank, Trace-Norm and Max-Norm. In Proc.
18th Conference on Learning Theory {COLT}, volume 3559 of LNCS, pages 545–560,
2005.

[175] Christina Teflioudi, Rainer Gemulla, and Olga Mykytiuk. LEMP: Fast Retrieval
of Large Entries in a Matrix Product. In Proc. ACM SIGMOD International
Conference on Management of Data, pages 107–122. ACM, 2015.

[176] Flemming Topsøe. Some bounds for the logarithmic function. Inequality theory
and applications, 4:137, 2006.

[177] Csaba D Toth, Joseph O’Rourke, and Jacob E Goodman. Handbook of discrete and
computational geometry. Chapman and Hall/CRC, 2017.

[178] Paul Turán. Research problems. Közl MTA Mat. Kutató Int, 6:417–423, 1961.

http://papers.nips.cc/paper/5329-asymmetric-lsh-alsh-for-sublinear-time-maximum-inner-product-search-mips
http://papers.nips.cc/paper/5329-asymmetric-lsh-alsh-for-sublinear-time-maximum-inner-product-search-mips

Bibliography 151

[179] Gregory Valiant. Finding correlations in subquadratic time, with applications
to learning parities and the closest pair problem. Journal of the ACM (JACM),
62(2):13, 2015.

[180] Hongya Wang, Jiao Cao, LihChyun Shu, and Davood Rafiei. Locality sensitive
hashing revisited. In CIKM, pages 1969–1978, 2013. doi:10.1145/2505515.
2505765.

[181] Jiannan Wang, Guoliang Li, and Jianhua Fe. Fast-join: An efficient method for
fuzzy token matching based string similarity join. In Proc. International Conference
on Data Engineering (ICDE), pages 458–469. IEEE, 2011.

[182] Jiannan Wang, Guoliang Li, and Jianhua Feng. Can we beat the prefix filtering?:
an adaptive framework for similarity join and search. In Proc. ACM SIGMOD
International Conference on Management of Data, pages 85–96. ACM, 2012.

[183] Ye Wang, Ahmed Metwally, and Srinivasan Parthasarathy. Scalable all-pairs
similarity search in metric spaces. In Proc. ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), pages 829–837, 2013.

[184] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A Quantitative Analysis
and Performance Study for Similarity-Search Methods in High-Dimensional
Spaces. In Proc. 24rd International Conference on Very Large Data Bases (VLDB),
pages 194–205, 1998.

[185] Alexander Wei. Optimal Las Vegas Approximate Near Neighbors in
{\(\mathscr{l}\)}p. In Proceedings of the Thirtieth Annual {ACM-SIAM} Symposium
on Discrete Algorithms, {SODA} 2019, San Diego, California, USA, January 6-9, 2019,
pages 1794–1813, 2019. URL: https://doi.org/10.1137/1.9781611975482.
108, doi:10.1137/1.9781611975482.108.

[186] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its
implications. Theoretical Computer Science, 348(2):357–365, 2005.

[187] Paweł Wolff. Hypercontractivity of simple random variables. Studia Mathematica,
3(180):219–236, 2007.

[188] David P Woodruff. Sketching as a Tool for Numerical Linear Algebra. Foundations
and Trends in Theoretical Computer Science, 10(1–2):1–157, 2014.

[189] Xian Wu, Moses Charikar, and Vishnu Natchu. Local Density Estimation in High
Dimensions. In Proceedings of the 35th International Conference on Machine Learning,
{ICML} 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pages 5293–
5301, 2018. URL: http://proceedings.mlr.press/v80/wu18a.html.

[190] Chenyi Xia, Hongjun Lu, Beng Chin Ooi, and Jing Hu. Gorder: an efficient
method for KNN join processing. In Proc. VLDB, pages 756–767, 2004.

[191] Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey Xu Yu. Efficient similarity joins
for near duplicate detection. In Proc. International Conference on World Wide Web
(WWW), pages 131–140, 2008.

http://dx.doi.org/10.1145/2505515.2505765
http://dx.doi.org/10.1145/2505515.2505765
https://doi.org/10.1137/1.9781611975482.108
https://doi.org/10.1137/1.9781611975482.108
http://dx.doi.org/10.1137/1.9781611975482.108
http://proceedings.mlr.press/v80/wu18a.html

152 Bibliography

[192] Xiao Yan, Jinfeng Li, Xinyan Dai, Hongzhi Chen, and James Cheng. Norm-
Ranging LSH for Maximum Inner Product Search. In Advances in Neural Informa-
tion Processing Systems, pages 2956–2965, 2018.

[193] Reza Bosagh Zadeh and Ashish Goel. Dimension independent similarity com-
putation. The Journal of Machine Learning Research, 14(1):1605–1626, 2013.

[194] Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and Michal Batko. Similarity
search: the metric space approach, volume 32. Springer Science & Business Media,
2006.

[195] Xiang Zhang, Fei Zou, and Wei Wang. Fastanova: an efficient algorithm for
genome-wide association study. In Proc. ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), pages 821–829. ACM, 2008.

	Contents
	Introduction
	Overview of Problems and Contributions
	Similarity Search
	Approximate Similarity Search
	Locality Sensitive Hashing
	Las Vegas Similarity Search
	Output Sensitive Similarity Search
	Hardness of Similarity Search through Orthogonal Vectors
	Tensor Sketching

	Small Sets Need Supermajorities: Towards Optimal Hashing-based Set Similarity
	Introduction
	Preliminaries
	Upper bounds
	Lower bounds
	Conclusion
	Appendix

	Optimal Las Vegas Locality Sensitive Data Structures
	Introduction
	Overview
	Hamming Space Data Structure
	Set Similarity Data Structure
	Conclusion and Open Problems
	Appendix

	Parameter-free Locality Sensitive Hashing for Spherical Range Reporting
	Introduction
	Preliminaries
	Data Structure
	Standard LSH, Local Expansion, and Probing the Right Level
	Adaptive Query Algorithms
	A Probing Sequence in Hamming Space
	Conclusion
	Appendix

	On the Complexity of Inner Product Similarity Join
	Introduction
	Hardness of IPS join
	Limitations of LSH for IPS
	Upper bounds
	Conclusion

	High Probability Tensor Sketch
	Introduction
	Preliminaries
	Technical Overview
	The High Probability Tensor Sketch
	Fast Constructions
	Applications
	Appendix

	Bibliography

