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Abstract—We formulate and optimally solve a new gener-
alized Set Similarity Search problem, which assumes the size
of the database and query sets are known in advance. By
creating polylog copies of our data-structure, we optimally solve
any symmetric Approximate Set Similarity Search problem,
including approximate versions of Subset Search, Maximum
Inner Product Search (MIPS), Jaccard Similarity Search and
Partial Match.

Our algorithm can be seen as a natural generalization
of previous work on Set as well as Euclidean Similarity
Search, but conceptually it differs by optimally exploiting the
information present in the sets as well as their complements,
and doing so asymmetrically between queries and stored sets.
Doing so we improve upon the best previous work: MinHash [J.
Discrete Algorithms 1998], SimHash [STOC 2002], Spherical
LSF [SODA 2016, 2017] and Chosen Path [STOC 2017] by
as much as a factor n0.14 in both time and space; or in the
near-constant time regime, in space, by an arbitrarily large
polynomial factor.

Turning the geometric concept, based on Boolean superma-
jority functions, into a practical algorithm requires ideas from
branching random walks on Z2, for which we give the first
non-asymptotic near tight analysis.

Our lower bounds follow from new hypercontractive argu-
ments, which can be seen as characterizing the exact family
of similarity search problems for which supermajorities are
optimal. The optimality holds for among all hashing based
data structures in the random setting, and by reductions, for
1 cell and 2 cell probe data structures.

I. INTRODUCTION

Set Similarity Search (SSS) is the problem of indexing
sets (or sparse boolean data) to allow fast retrieval of
sets, similar under a given similarity measure. The sets
may represent one-hot encodings of categorical data, “bag
of words” representations of documents, or “visual/neural
bag of words” models, such as the Scale-invariant feature
transform (SIFT), that have been discretized. The appli-
cations are ubiquitous across Computer Science, touching
everything from recommendation systems to gene sequences
comparison. See [1], [2] for recent surveys of methods and
applications.

Set similarity measures are any function, s that takes two
sets and return a value in [0, 1]. Unfortunately, most variants
of Set Similarity Search, such as Partial Match, are hard to
solve assuming popular conjectures around the Orthogonal
Vectors Problem [3], [4], [5], [6], which roughly implies
that the best possible algorithm is to not build an index,

and “just brute force” scan through all the data, on every
query. A way to get around this is to study Approximate
SSS: Given a query, q, for which the most similar set y has
similarity(q, y) ≥ s1, we are allowed to return any set y′

with similarity(q, y′) > s1, where s2 < s1. In practice, even
the best exact algorithms for similarity search use such an
(s1, s2)-approximate1 solution as a subroutine [8].

Euclidean Similarity Search, where the data is vectors
x ∈ Rd and the measure of similarity is “Cosine”, has
recently been solved optimally — at least in the model
of hashing based data structures [9], [10]. Meanwhile, the
problem on sets has proven much less tractable. This is
despite that the first solutions date back to the seminal
MinHash algorithm (a.k.a. min-wise hashing), introduced
by Broder et al. [11], [12] in 1997 and by now boasting
thousands of citations. In 2014 MinHash was shown to
be near-optimal for set intersection estimation [13], but
in a surprising, recent development, it was shown not to
be optimal for similarity search [14]. The question thus
remained: What is the optimal algorithm for Set Similarity
Search?

The question is made harder by the fact that previous
algorithms study the problem under different similarity mea-
sures, such as Jaccard, Cosine, or Braun-Blanquet similarity.
The only thing those measures have in common is that
they can be defined as a function f of the sets sizes, the
universe size, and the intersection size. In other words,
similarity(q, y) = f(|q|, |y|, |q ∩ y|, |U |) where |U | is the
size of the universe from which the sets are taken. In fact,
any symmetric measure of similarity for sets must be defined
by those four quantities.

Hence, to fully solve Set Similarity Search, we avoid spec-
ifying a particular similarity measure, and instead define the
problem solely from those four parameters. This generalized
problem is what we solve optimally in this paper, for all
values of the four parameters:

Definition 1 (The (wq, wu, w1, w2)-GapSS problem). Given
some universe U and a collection Y ⊆

(
U

wu|U |
)

of |Y | = n

sets of size wu|U |, build a data structure that for any query
set q ∈

(
U

wq|U |
)
: either returns y′ ∈ Y with |y′∩q| > w2|U |;

or determines that there is no y ∈ Y with |y ∩ q| ≥ w1|U |.

1By classical reductions [7] we can assume s1 is known in advance.



For the problem to make sense, we assume that wq|U |
and wu|U | are integers, that wq, wu ∈ [0, 1], and that 0 <
w2 < w1 ≤ min{wq, wu}. Note that |U | may be very large,
and as a consequence the values wq, wu, w1, w2 may all be
very small.

At first sight, the problem may seem easier than the
version where the sizes of sets may vary. However, the
point is that making polylog(n) data-structures for sets
and queries of progressively bigger sizes,2 immediately
yields data structures for the original problem. Similarly,
any algorithm assuming a specific set similarity measure
also yields an algorithm for (wq, wu, w1, w2)-GapSS, so
our lower bounds also hold for all previously studied SSS
problems.

Example 1: As an example, assume we want to solve
the Subset Search Problem, in which we, given a query q,
want to find a set y in the database, such that y ⊆ q. If
we allow a two-approximate solution, GapSS includes this
problem by setting w1 = wu and w2 = w1/2: The overlap
between the sets must equal the size of the stored sets; and
we are guaranteed to return a y′ such that at least |q∩ y′| ≥
|y|/2.

Example 2: In the (j1, j2)-Jaccard Similarity Search
Problem, given a query, q, we must find y such that the
Jaccard Similarity |q ∩ y|/|q ∪ y| > j2 given that a y′ exists
with similarity at least j1. After partitioning the sets by size,
we can solve the problem using GapSS by setting w1 =
j1(wq+wu)

1+j1
and w2 =

j2(wq+wu)
1+j2

. The same reduction works
for any other similarity measure with polylog(n) overhead.

The version of this problem where w2 = wqwu is similar
to what is in the literature called “the random instance” [16],
[17], [18]. To see why, consider generating n − 1 sets
independently at random with size wu|U |, and a “planted”
pair, (q, y), with size respectively wq|U | and wu|U | and with
intersection |q ∩ y| = w1|U |. Insert the size wu|U | sets into
the database and query with q. Since q is independent from
the n−1 original sets, its intersection with those is strongly
concentrated around the expectation wqwu|U |. Thus, if we
parametrize GapSS with w2 = wqwu + o(1), the query for
q is guaranteed to return the planted set y.

There is a tradition in the Similarity Search literature for
studying such this independent case, in part because it is
expected that one can always reduce to the random instance,
for example using the techniques of “data-dependent hash-
ing” [19], [9]. However, for such a reduction to make sense,
we would first need an optimal “data-independent” algorithm
for the w2 = wqwu case, which is what we provide in this
paper. We discuss this further in the Related Work section.

For generality we still define the problem for all w2 ∈
(0, w1), our upper bound holds in this general setting and

2For details, see [14] Section 5. A similar reduction, called “norm
ranging”, was recently shown at NeurIPS to give state of the art results for
Maximum Inner Product Search in Rd [15], suggesting it is very practical.
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(a) Two cohorts, y and q with a large intersection (blue). The first
representative set, s, favours y, while the second, s′, favours both
y and q.

q
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(b) Branching random walk run on two cohorts q and y. The bold
lines illustrate paths considered by sets, while the dashed lines
adorn paths only considered by only one of x or y. Here q has a
higher threshold (tq = 2/3) than y (tu = 1/2), so q only considers
paths starting with two favourable representatives.

Figure 1: The representative sets, coloured in red, are scat-
tered in the universe to provide an efficient space partition
for the data.

so does the lower bound Theorem 2.
We give our new results in Section I-B and our new lower

bounds in Section I-C, but first we would like to sketch the
algorithm and some probabilistic tools used in the theorem
statement.

A. Supermajorities

In Social Choice Theory a supermajority is when a
fraction strictly greater than 1/2 of people agree about
something.3 In the analysis of Boolean functions a t-
supermajority function f : {0, 1}n → {0, 1} can be defined
as 1, if a fraction ≥ t of its arguments are 1, and 0 otherwise.
We will sometimes use the same word for the requirement
that a fraction ≤ t of the arguments are 1.4

The main conceptual point of our algorithm is the real-
ization that an optimal algorithm for Set Similarity Search

3“America was founded on majority rule, not supermajority rule. Some-
how, over the years, this has morphed into supermajority rule, and that
changes things.” – Kent Conrad.

4It turns out that simply staying within a factor 1 ± o(1) of t is also
sufficient. This is similar to Dubiner [20].



must take advantage of the information present in the given
sets, as well as that present in their complement. A similar
idea was leveraged by Cohen et al. [21] for Set Similarity
Estimation, and we show in the full version [22] that the
classical MinHash algorithm can be seen as an average of
functions that pull varying amounts of information from the
sets and their complements. In this paper, we show that there
is a better way of combining this information and that doing
so results in an optimal hashing based data structure for the
entire parameter space of random instance GapSS.

This way of combining this information is by superma-
jority functions. While on the surface they will seem similar
to the threshold methods applied for time/space trade-offs
in Spherical LSF [10], our use of them is very different.
Where [10] corresponds to using small t = 1/2 + o(1)
thresholds (essentially simple majorities) our t may be as
large as 1 (corresponding to the AND function) or as small
as 0 (the NOT AND function). This way they are a sense as
much a requirement on the complement as it is on the sets
themselves.

The algorithm (idealized): While our data structure is
technically a tree with a carefully designed pruning rule,
the basic concept is very simple.

We start by sampling a large number of “representative
sets” R ⊆

(
U
k

)
. Here roughly |R| ≈ nlogn and k ≈ log n.

Given family Y ⊆
(

U
wu|U |

)
of sets to store, which we call

“cohorts”, we say that r ∈ R “t-favours” the cohort y if
|y ∩ r|/|r| ≥ t. Representing sets as vectors in {0, 1}d, this
is equivalent to saying ft(r ∩ y) = 1, where ft is the t-
supermajority function. (If t is less than wu, the expected
size of the overlap, we instead require |y ∩ r|/|r| ≤ t.)

Given the parameters tq, tu ∈ [0, 1], the data-structure is
a map from elements of R to the cohorts they tu-favour.
When given a query q ∈

(
U

wq|U |
)
, (a wq|U | sized cohort), we

compare it against all cohorts y favoured by representatives
r ∈ R which tq-favour q (that is |q ∩ r|/|r| ≥ tq). This set
Rtq (q) is much smaller than |R| (we will have |Rtq (q)| ≈ nε
and E[|Rtu(y)∩Rtq (q)|] ≈ nε−1), so the filtering procedure
greatly reduces the number of cohorts we need to compare
to the query from n to nε (where ε = ρq < 1 is defined
later.)

The intuition is that while it is quite unlikely for a
representative to favour a given cohort, and it is very unlikely
for it to favour two given cohorts (q and y). So if it does, the
two cohorts probably have a substantial overlap. Figure 1a
has a simple illustration of this principle.

In order to fully understand supermajorities, we want
to understand the probability that a representative set is
simultaneously in favour of two distinct cohorts given
their overlap and representative sizes. This paragraph is a
bit technical and may be skipped at first read. Chernoff
bounds in R are a common tool in the community, and
for iid. Xi ∼ Bernoulli(p) ∈ {0, 1} the sharpest form

(with a matching lower bound) is Pr[
∑
Xi ≥ tn] ≤

exp(−nd(t ‖ p)),5 which uses the binary KL-Divergence
d(t ‖ p) = t log t

p + (1 − t) log 1−t
1−p . The Chernoff bound

for R2 is less common, but likewise has a tight descrip-
tion in terms of the KL-Divergence between two discrete
distributions: D(P ‖Q) =

∑
ω∈Ω P (ω) log P (ω)

Q(ω) (summing
over the possible events). In our case, we represent the
four events that can happen as we sample an element of
U as a vector Xi ∈ {0, 1}2. Here Xi = [ 1

1 ] means
the ith element hit both cohorts, Xi = [ 1

0 ] means it hit
only the first and so on. We represent the distribution of
each Xi as a matrix P =

[
w1 wq−w1

wu−w1 1−wq−wu+w1

]
, and say

Xi ∼ Bernoulli(P ) iid. such that Pr[Xi = [ 1−j
1−k ]] = Pj,k.

Then Pr[
∑
Xi ≥ [ tqtu ]n] ≈ exp(−nD(T ‖P )) where

T =
[

t1 tq−t1
tu−t1 1−tq−tu+t1

]
and t1 ∈ [0,min{tu, tq}] min-

imizes D(T ‖P ). (Here the notation [ xy ] ≥ [ tutq ] means
x ≥ tu ∧ y ≥ tq .)

The optimality of Supermajorities for Set Similarity
Search is shown using a certain correspondence we show
between the Information Theoretical quantities described
above, and the hypercontractive inequalities that have been
central in all previous lower bounds for similarity search.

These bounds above would immediately allow a cell
probe version of our upper bound Theorem 1, e.g. a query

would require n
D(T1 ‖P1)−d(tq ‖wq)

D(T2 ‖P2)−d(tq ‖wq) probes, where Pi =[
wi wq−w1

wu−wi 1−wq−wu+wi

]
and Ti defined accordingly. The al-

gorithmic challenge is that for optimal performance, |R|
must be in the order of Ω(nlogn), and so checking which
representatives favour a given cohort takes super polynomial
time!

The classical approach to designing an oracle to efficiently
yield all such representatives, , is a product-code or “ten-
soring trick”. The idea, (used by [23], [24]), is to choose a
smaller k′ ≈

√
k, make k/k′ different R′i sets of size n

√
logn

and take R as the product R′1 × · · · × R′k/k′ . As each R′

can now be decoded in no(1) time, so can R. This approach,
however, in the case of Supermajorities, has a big drawback:
Since tqk′ and tuk′ must be integers, tq and tu have to be
rounded and thus distorted by a factor 1 + 1/k′. Eventually,
this ends up costing us a factor w−k/k

′

1 which can be much
larger than n. For this reason, we need a decoding algorithm
that allows us to use supermajorities with as large a k as
possible!

We instead augment the above representative sampling
procedure as follows: Instead of independent sampling sets,
we (implicitly) sample a large, random height k tree, with
nodes being elements from the universe. The representative
sets are taken to be each path from the root to a leaf. Hence,
some sets in R share a common prefix, but mostly they are

5A special case of Hoeffding’s inequality is obtained by d(p+ ε ‖ p) ≥
2ε2, Pinsker’s inequality.



still independent. We then add the extra constraint that each
of the prefixes of a representative has to be in favour of a
cohort, rather than only having this requirement on the final
set. This is the key to making the tree useful: Now given a
cohort, we walk down the tree, pruning any branches that
do not consistently favour a supermajority of the cohort.
Figure 1b has a simple illustration of this algorithm. This
pruning procedure can be shown to imply that we only spend
time on representative sets that end up being in favour of
our cohort, while only weakening the geometric properties
of the idealized algorithm negligibly.

While conceptually simple and easy to implement (mod-
ulo a few tricks to prevent dependency on the size of the
universe, |U |), the pruning rule introduces dependencies that
are quite tricky to analyze sufficiently tight. The way to
handle this will be to consider the tree as a “branching
random walk” over Z2

+ where the value represents the size of
the representative’s intersection with the query and a given
set respectively. The paths in the random walk at step i must
be in the quadrant [tqi, i]×[tui, i] while only increasing with
a bias of [ wq

wu
] per step. The branching factor is carefully

tuned to just the right number of paths survive to the end.

The aspect of the pruning is a very important property of
our algorithm and conceptually departs from previous

methods.

Previous Locality Sensitive Filtering, LSF, algorithms [14],
[18] can be seen as trees with pruning, but their pruning
is on the individual node level, rather than on the entire
path. This makes a big difference in which space partitions
can be represented, since pruning on node level ends up
representing the intersection of simple partitions, which can
never represent Supermajorities in an efficient way.

B. Upper Bounds
As discussed, the performance of our algorithm is de-

scribed in terms of KL-divergences. To ease understanding,
we give a number of special cases, in which the gen-
eral bound simplifies. The bounds in this section assume
wq, wu, w1, w2 are constants. See the full version [22] for a
version without this assumption.

Theorem 1 (Simple Upper Bound). For any choice of
constants wq, wu ≥ w1 ≥ w2 ≥ 0 and 1 ≥ tq, tu ≥ 0
we can solve the (wq, wu, w1, w2)-GapSS problem over
universe U with query time Õ(nρq + wq|U |) + no(1) and
auxiliary space usage Õ(n1+ρu), where

ρq =
D(T1 ‖P1)− d(tq ‖wq)
D(T2 ‖P2)− d(tq ‖wq)

,

ρu =
D(T1 ‖P1)− d(tu ‖wu)

D(T2 ‖P2)− d(tq ‖wq)
.

and T1, T2 are distributions with expectation [ tqtu ] minimiz-
ing respectively D(T1 ‖P1) and D(T2 ‖P2), as described in
Section I-A.

The two bounds differ only in the d(tq ‖wq) and
d(tu ‖wu) terms in the numerator. The thresholds tq and
tu can be chosen freely in [0, 1]2. Varying them compared
to each other allows a full space/time trade-off with ρq = 0
in one end and ρu = 0 (and ρq < 1) in the other. Note
that for a given GapSS instance, there are many (tq, tu)
which are not optimal anywhere on the space/time trade-
off. Using Lagrange’s condition ∇ρq = λ∇ρu one gets
a simple equation that all optimal (tq, tu) trade-offs must
satisfy. As we will discuss later, it seems difficult to prove
that a solution to this equation is unique, but in practice, it
is easy to solve and provides an efficient way to optimize ρq
given a space budget n1+ρu . Figure 2 and Figure 3 provides
some additional intuition for how the ρ values behave for
different settings of GapSS.

Regarding the other terms in the theorem, we note that the
Õ hides only log n factors, and the additive no(1) term grows
as eO(

√
logn log logn), which is negligible unless ρq = 0. We

also note that there is no dependence on |U |, other than the
need to store the original dataset and the additive wq|U |,
which is just the time it takes to receive the query. The
main difference between this theorem and the full version
is that the full theorem does not assume the parameters
(wq, wu, w1, w2) are constants but consider them potentially
very small. In this more realistic scenario, it becomes very
important to limit the dependency on factors like w−1

1 , which
is what guides a lot of our algorithmic decisions.

Example 1: Near balanced ρ values.: As noted, many
pairs (tq, tu) are not optimal on the trade-off, in that one
can reduce one or both of ρq , ρu by changing them. The
pairs that are optimal are not always simple to express, so it
is interesting to study those that are. One such particularly
simple choice on the Lagrangian is tq = 1 − wu and
tu = 1 − wq .6 This point is special because the values of
tq and tu depend only on wu and wq , while in general they
will also depend on w1 and w2. In this setting we have
Ti =

[ 1−wq−wu+wi wu−wi

wu−wi wi

]
, which can be plugged into

Theorem 1.
In the case wq = wu = w we get the balanced ρ values

ρq = ρu = log(w1

w
1−w

1−2w+w1
)/ log(w2

w
1−w

1−2w+w2
) in which

case it is simple to compare with Chosen Path’s ρ value of
log(w1

w )
/

log(w2

w ). Chosen Path on balanced sets was shown
in [14] to be optimal for w,w1, w2 small enough, and we
see that Supermajorities do indeed recover this value for that
range.

Example 2: Subset/superset queries.: If w1 =
min{wu, wq} and w2 = wuwq we can take tq = −α

wq−wu
+

wq(1−wu)
wq−wu

and tu =
wu(1−wu)wq(1−wq)

wq−wu
α−1 − wu(1−wq)

wq−wu
for

6To make matters complicated, this is a simple choice and on the
Lagrangian, but that doesn’t prove another point on the Lagrangian won’t
reduce both ρq and ρu and thus be better. That we have a matching lower
bound for the algorithm doesn’t help, since it only matches the upper bound
for (tq , tu) minimal in Theorem 1. In the case wq = wu we can, however,
prove that this tq , tu pair is optimal.



any α ∈ [w1−wqwu, max{wu, wq}−wqwu]. This represents
one of the cases where we can solve the Lagrangian equation
to get a complete characterization of the tq , tu values that
give the optimal trade-offs. Note that when w1 = wu or
w1 = wq , the P matrix as used in the theorem has 0’s in
it. The only way the KL-divergence D(T ‖P ) can then be
finite is by having the corresponding elements of T be 0 and
use the fact that 0 log 0

q is defined to be 0 in this context.
Example 3: Linear space/constant time.: Setting t1 in

T1 =
[

t1 tq−t1
tu−t1 1−tq−tu+t1

]
such that either t1

w1
=

tq−t1
wq−w1

or
t1
w1

= tu−t1
wu−w1

we get respectively D(T1 ‖P1) = d(tq ‖wq)
or D(T1 ‖P1) = d(tu ‖wu). Theorem 1 then yields algo-
rithms with either ρq = 0 or ρu = 0 corresponding to
either a data structure with ≈ eÕ(

√
logn) query time, or with

Õ(n) auxiliary space. Like [10] we have ρq < 1 for any
parameter choice, even when ρu = 0. For very small wq and
wu < exp(−

√
log n) there are some extra concerns which

are discussed after the main theorem.

C. Lower Bounds

Results on approximate similarity search are usually
phrased in terms of two quantities: (1) The “query exponent”
ρq ∈ [0, 1] which determines the query time by bounding it
by O(nρq ); (2) The “update exponent” ρu ∈ [0, 1] which
determines the time required to update the data structure
when a point is inserted or deleted in Y and is given
by O(nρu). The update exponent also bounds the space
usage as O(n1+ρu). Given parameters (wq, wu, w1, w2), the
important question is for which pairs of (ρq, ρu) there exists
data structures.

Previous work split into two models: (1) Cell probe lower
bounds [25], [26], [10] and (2) Lower bounds in restricted
models [27], [28], [29], [10], [14]. The common restricted
models are the LSH model [30], the LSF model [24] and
the most general “list of points” model formulated by [10].
This last model contains all known Similarity Search data
structures, except for the so-called “data-dependent” algo-
rithms. (It is however conjectured [18] that data-dependency
does not help on random instances (recall this corresponds
to w2 = wqwu), which is the setting of Theorem 3.)

We show two main lower bounds: (1) A symmetric LSF
bound that requires wq = wu and ρq = ρu and (2) A list-of-
points bound that requires the “random setting” w2 = wqwu.
The second type is tight everywhere, but quite technical. The
first type meanwhile is quite simple to state, informally:

Theorem 2. If wq = wu = w and ρu = ρq = ρ, any data-
independent LSF data structure must use space n1+ρ and
have query time nρ where ρ ≥ log( w1−w2

w(1−w) )
/

log( w2−w2

w(1−w) ) .

We note that previous symmetric bounds [31], [14] were
only asymptotic, whereas our lower bound holds over the
entire range of 0 < w2 < w1 < w < 1. By comparison with
ρ = log( w1(1−w)

w(1−2w+w1) )/ log( w2(1−w)
w(1−2w+w2) ) from Example 1

in the Upper Bounds section, we see that the lower bound
is sharp when w,w1, w2 → 07 and also for w1 → w, since
w(1 − 2w + w1) = w(1 − w) − w(w − w1). However, for
w2 = w2 (the random instance), Theorem 2 just says ρ ≥ 0,
which means it tells us nothing.

For the random instances, we give an even stronger lower
bound, which gets rid of the restrictions wq = wu and ρq =
ρu. This lower bound is tight for any 0 < wqwu < w1 <
min{wq, wu} in the list-of-points model:

Theorem 3. Consider any list-of-point data structure for
the (wq, wu, w1, wqwu)-GapSS problem over a universe of
size d of n points with wqwud = ω(log n), which uses
expected space n1+ρu , has expected query time nρq−on(1),
and succeeds with probability at least 0.99. Then for every
α, β ∈ [0, 1] with α+ β = 1 there exists tq, tu such that

αρq + βρu ≥ α
D(T ‖P )− d(tq ‖wq)

d(tu ‖wu)

+ β
D(T ‖P )− d(tu ‖wu)

d(tu ‖wu)
,

where P =
[

w1 wq−w1

wu−w1 1−wq−wu+w1

]
and T � P minimizes

D(T ‖P ) given E
X∼T

[X] = [ tqtu ].

Note that for w2 = wqwu, the term D(T2 ‖P2), in
Theorem 1, splits into d(tq ‖wq) + d(tu ‖wu), and so the
upper and lower bounds perfectly match. This shows that
for any linear combination of ρq and ρu our algorithm
obtains the minimal value. By continuity of the terms, this
equivalently states as saying that no list-of-points algorithm
can get a better query time than our Theorem 1, given a
space budget imposed by ρu. 8

Example 1: Choices for tq and tu: As in the upper
bounds, it is not easy to prove that a particular choice of
tq and tu minimizes the lower bound. Setting tq = 1− wu
and tu = 1−wq the expression in Theorem 3 we obtain the
same value as in Example 1 of the upper bound, however
it could be (though we conjecture not) that another set of
thresholds would reduce both the upper and lower bound.

The good news is that the hypercontractive inequality by
Oleszkiewicz [32], can be used to prove certain optimal
choices on the space/time trade-off.9 In particular we will
show that for wq = wu = w the choice tq = tu = 1− w is
optimal in the lower bound, and matches exactly the value

7As w,w1, w2 → 0 we recover the lower bound ρ ≥
log(w1

w
)
/
log

(w2
w

)
obtained for Chosen Path in [14].

8It is easy to see that ρu = 0 minimizes αρq + (1 − α)ρu when
α = 0, and similarly ρu = ρmax minimizes αρq + (1 − α)ρu when
α = 1, where ρmax is the minimal space usage when ρq = 0. Furthermore,
we note that when we change α from 0 to 1, then ρu will continuously
and monotonically go from 0 to ρmax. This shows that for every ρu ∈
[0, ρmax] there exists an α such that αρq+(1−α)ρu is minimized, where
ρq is best query time given the space budget imposed by ρu.

9The generalizations by Wolff [33] could in principle expand this range,
but they are only tight up to a constant in the exponent.



ρ = log
(

w1(1−w)
w(1−2w+w1)

)
/ log( w2(1−w)

w(1−2w+w2) ) from Example 1
in the Upper Bounds section.

For cell probe lower bounds, we can use the framework of
Panigrahy et al. [25], [26], [34]. Using the hypercontractive
inequalities shown in this paper with this framework, as well
(as the extension by [10]), we can show, unconditionally,
that no data structure, which probes only 1 or 2 memory
locations10, can improve upon the space usage of n1+ρu

obtained by Theorem 1 as we let ρq = 0. In particular,
this shows that the near-constant query time regime from
Example 3 in the Upper Bounds is optimal up to no(1)

factors in time and space.

D. Technical Overview

The main realization of this paper, is that all set similarity
search problems can be stated in terms of a single geometric
question, which can be answered optimally. Once proven,
the main challenge is to turn this geometry into an efficient
algorithm.

Supermajorities – why do they work?: Representing
sets as binary vectors x ∈ {0, 1}|U |, it is natural to assume
the best Similarity Search data structure for Euclidean and
binary data — Spherical LSF — should be the best choice
for sets as well. Unfortunately this mapping throws away
two key properties of the data: that the vectors are sparse,
and that they are non-negative. Algorithms like MinHash,
which were specifically designed for sets, take advantage of
the sparsity by entirely disregarding the remaining universe,
U . This is seen by the fact that adding new elements to U
never changes the MinHash of a set. Meanwhile Spherical
LSF takes the inner product between x and a Gaussian vector
scaled down by 1/

√
|U |, so each new element added to U ,

in a sense, lowers the “sensitivity” to x.
In an alternative situation we might imagine |x| being

nearly as big as |U |. In this case we would clearly prefer to
work with U \x, since information about an element that is
left out, is much more valuable than information about an
element contained in x. What Supermajorities does can be
seen as perfectly balancing how much information to include
from x with how much to include from U \ x.

As a side effect the extra flexibility afforded by our
approach allows balancing the time required to perform
queries with the size of the database. It is perhaps surprising
that this simple balancing act is enough to be optimal across
all hashing algorithms as well as 1 cell and 2 cell probe data
structures.

The results turn out to be best described in terms of
the KL-divergences D(T ‖P )− d(tq ‖wq) and D(T ‖P )−
d(tu ‖wu), which are equivalent to D(TXY ‖PY |XTX) and
D(TXY ‖PX|Y TY ). Here PXY is the distribution of a
coordinated sample from both a query and a dataset, PX and

10For 1 probe, the word size can be no(1), whereas for the 2 probe
argument, the word size can only be o(logn) for the lower bound to hold.

PY are the marginals, and TXY is roughly the distribution of
samples conditioned on having a shared representative set.
Intuitively these describe the amount of information gained
when observing a sample from TXY given a belief that X
(resp. Y ) is distributed as T and Y (resp. X) is distributed
as P .11

Branching Random Walks: Making Supermajorities a
practical algorithm (rather than just cell probe), requires, as
discussed in the introduction, an efficient decoding algorithm
of which representative sets overlap with a given cohort.
Such oracles have been studied carefully in the literature, and
since the LSH forest in 2005 [35] a common idea has been
trees with independent pruning in each leaf. Our method is
the first to significantly depart from this idea: While still a
tree, our pruning is highly dependent across the levels of
the tree, carrying a state from the root to the leaf which
needs be considered by the pruning as well as the analysis.
In “branching random walk”, the state is represented in the
“random walk”, while the tree is what makes it branching.
While considered heuristically in [24], such a stateful oracle
has not before been analysed, partly because it wasn’t
necessary. For Supermajorities, meanwhile, it is crucially
important for getting sub linear query times for very small
sets.

The approach from [36], [24], [10] when applied to our
scheme would correspond to making our representatives
have size just

√
k (so there are only |R′| ≈ eÕ(

√
logn) of

them,) and then make R′⊗
√
k our new R. Since R′ can be

decoded in no(1) time, and the second step can be made to
take only time proportional to the output, this works well for
some cases. This approach has two main issues: (1) There
is a certain overhead that comes from not using the optimal
filters, but only an approximation. However, this gives only
a factor eÕ(

√
logn), which is usually tolerated. Worse is

(2): Since the thresholds tqk and tuk have to be integral,
using representative sets of size

√
k means we have to

“repair” them by a multiplicative distortion of approximately
1± 1/

√
k, compared to 1± 1/k for the “real” filters. This

turns out to cost as much as w−
√
k

1 which can easily be much
larger than the polynomial cost in n. In a sense, this shows
that supermajority functions must be applied to measure the
entire representative part of a cohort at once! This makes
tensoring not well fit for our purposes.

A pruned branching random walk on the real line can be
described in the following way. An initial ancestor is created
with value 0 and form the zeroth generation. The people in
the ith generation give birth ∆ times each and independently
of one another to form the (i+ 1)th generation. The people
in the (i+1)th generation inherit the value, v, of their parent
plus an independent random variable X . If ever v+X < 0,
the child doesn’t survive. After k generations, we expect

11The use of information theory may remind readers of the Entropy LSH
approach by [16], but the methods are similar in name only.



by linearity ∆k Pr[∀i≤k
∑
j∈[i]Xi ≥ 0] people to be alive,

where Xi are iid. random variables as used in the branching.
A pruned 2d-branching random walk is simply one using
values ∈ R2.

Branching random walks have been analysed before in
the Brownian motion literature [37]. They are commonly
analysed using the second-moment method, however, as
noted by Bramson [38]: “an immediate frontal assault using
moment estimates, but ignoring the branching structure of
the process, will fail.” The issue is that the probability that
a given pair of paths in the branching process survives is
too large for standard estimates to succeed. If the lowest
common ancestor of two nodes manages to accumulate
much more wealth than expected, its children will have
a much too high chance of surviving. For this reason we
have to counterintuitively add extra pruning when proving
the lower bound that a representative set survives. More
precisely, we prune all the paths that accumulate much
more than the expected value. We show that this does not
lower the probability that a representative set is favour by
much, while simultaneously decreasing the variance of the
branching random walk a lot. Unfortunately, this adds further
complications, since ideally, we would like to prune every
path that gets below the expectation. Combined with the
upper bound this would trap the random walks in a band
to narrow to guarantee the survival of a sufficient number
of paths. Hence instead, we allow the paths to deviate by
roughly a standard deviation below the expectation.

Output-sensitive set decoding: In our algorithm we are
careful to not have factors of |U | and |X| (the size of the
sets) on our query time and space bounds. When sampling
our tree, at each level we must pick a certain number, ∆,
of elements from the universe and check which of them
are contained in the set being decoded. This is an issue,
since ∆ may be much bigger than X ∩ ∆, and so we
need an “output-sensitive” sampling procedure. We do this
by substituting random sampling with a two-independent
hash function h : Uk → [q], where q is a prime number
close to |U |. The sampling criterion is then h(r ◦ x) ≤ ∆,
where ◦ is string concatenation. The function h(r) can
be taken to be

∑k
i=1 aixi + b (mod q) for random values

a1, . . . , ak, b ∈ [q], so we can expand h(r◦x) as h(r)+akx
(mod q).

Now {x ∈ X | (h(r ◦ x) mod q) < ∆}
= {x ∈ X | (h(r) + akx mod q) < ∆}
= ∪∆−1

i=0 {x ∈ X | akx ≡ ∆− h(r) mod q}
= {x ∈ X | (akx mod q) ∈ [−h(r),∆− h(r)] mod q},

where the last equation is adjusted in case (−h(r) mod q) >
(∆−h(r) mod q). By pre-computing {akx mod q | x ∈ X}
(just has to be done one for each of roughly log n levels
in the tree), and storing the result in a predecessor data-
structure (or just sorting it), the sampling can be done it

time proportional to the size of its output.
Lower Bounds and Hypercontractivity: The structure

of our lower bounds is by now standard: We first reduce our
lower bound to random instances by showing that with high
probability the random instances are in fact an instance of
our problem. For this to work, we need ww |U | = ω(log n)
and in particular |U | = ω(log n), so we get concentration
around the mean. This requirement is indeed known to be
necessary, since the results of [24], [39] break the known
lower bounds in the “medium dimension regime” when
|U | = O(log n).

The main difference compared to previous bounds is that
we study Boolean functions on so-called p-biased spaces,
where the previous lower bounds used Boolean functions
on unbiased spaces. This is necessary for us to lower bound
every parameter choice for GapSS. In particular we are
interested in tight hypercontractive inequalities on p-biased
spaces. We say that a distribution PXY on a space ΩX×ΩY
is (r, s)-hypercontractive if

E
PXY

[f(X)g(Y )] ≤ E
PX

[f(X)r]
1/r

E
PY

[g(Y )s]
1/s

for all functions f : ΩX → R and g : ΩY → R, where PX
and PY are the marginal distributions on the spaces ΩX and
ΩY respectively. On unbiased spaces, the classic Bonami-
Beckner inequality [40], [41] gives a complete understanding
of the hypercontractivity. Unfortunately, this is not the case
for p-biased spaces where the hypercontractivity is much
less understood, with [32] and [33] being state of the
art. We sidestep the issue of finding tight hypercontractive
inequalities by instead showing an equivalence between
hypercontractivity and KL-divergence, which is captured in
the following lemma:12

Lemma I.1. Let PXY be a probability distribution on a
space ΩX × ΩY and let PX and PY be the marginal
distributions on the spaces ΩX and ΩY respectively. Let
s, r ∈ [1,∞), then the following is equivalent

1) For all functions f : ΩX → R and g : ΩY → R,

E
PXY

[f(X)g(Y )] ≤ E
PX

[f(X)r]
1/r

E
PY

[g(Y )s]
1/s

.

2) For all probability distributions QXY � PXY ,

D(QXY ‖PXY ) ≥ 1
r D(QX ‖PX) + 1

s D(QY ‖PY ),

where QX and QY be the marginal distributions on
the spaces ΩX and ΩY respectively

The main technical argument needed for proving
Lemma I.1 is that, for all probability distributions P,Q,
where Q is absolutely continuous with respect to P , and
all functions φ,

D(Q‖P) + log E
X∼P

[exp(φ(X))] ≥ E
X∼Q

[φ(X)] .

12It appears that one might prove a similar result using [42] and [43].



This is attributed to Donsker and Varadhan [44].
We use Lemma I.1 together with the “Two-Function

Hypercontractivity Induction Theorem” [28], which shows
that if P⊗nXY is (r, s)-hypercontractive if and only
if PXY is (r, s)-hypercontractive. This implies that
E
P⊗n

XY

[f(X)g(Y )] ≤ E
P⊗n

X

[f(X)r]
1/r

E
P⊗n

Y

[g(Y )s]
1/s for

all functions f, g if and only D(QXY ‖PXY ) ≥
1
r D(QX ‖PX) + 1

s D(QY ‖PY ) for all probability distri-
butions QXY . In the proof of Theorem 3 we have PXY =[

w1 wq−w1

wu−w1 1−wq−wu+w1

]
and consider all the probability dis-

tributions QXY � PXY minimizing D(QXY ‖PXY ) given
E
QX

[X] = [ tqtu ].

The obtained inequalities can be used directly with the
framework by Panigrahy et al. [25] to obtain bounds on
“Robust Expansion”, which has been shown to give lower
bounds for 1-cell and 2-cell probe data structures, with word
size no(1) and o(log n) respectively.

The Directed Noise Operator: We extend the range
of our lower bounds further, by studying a recently de-
fined generalization of the p-biased noise operator [45],
[46], [47], [48]. This “Directed Noise Operator”, T p1→p2ρ :

L2({0, 1}d , π⊗dp1 ) → L2({0, 1}d , π⊗dp2 ) has the property
̂T p1→p2ρ f

(p2)

(S) = ρ|S|f̂ (p1)(S) for any S ⊆ [d], where
f̂ (p)(S) denotes the p-biased Fourier coefficient of f .
Just like the Ornstein Uhlenbeck operator, we show that
T p2→p3σ T p1→p2ρ = T p1→p3ρσ and that T p2→p1ρ is the adjoint of
T p1→p2ρ . By connecting this operator to our hypercontractive
theorem, we can integrate the results by Oleszkiewicz and
obtain provably optimal points on the (tq, tu) trade-off.

We show that for p-biased distributions over {0, 1}n, we
can add the following line to the list of equivalent statements
in Lemma I.1:

3) For all functions f : {0, 1}n → R it holds
‖T p1→p2ρ f‖Ls′ (p1) ≤ ‖f‖Lr(p2).

The operator allows us to prove some optimal choices for r
and s in Lemma I.1 (and by effect for tq and tu.)

Another use of T is in proving lower bounds outside of
the random instance w2 = wqwu regime. Using the power
means inequality over p-biased Fourier coefficients, we show
the relation(

〈T p→pα f, f〉L2(p)/ ‖f‖
2
L2(p)

)1/ log(1/α)

≤
(
〈T p→pβ f, f〉L2(p)/ ‖f‖

2
L2(p)

)1/ log(1/β)

.

which is allows comparing functions under two different
noise levels. This is stronger than hypercontractivity, even
though we can prove it in fewer instances. The proof can
been seen as a variation of [31] and we get a lower bound
with a similar range, but without asymptotics and for Set
Similarity instead of Hamming space Similarity Search.

E. Related Work
For the reasons laid out in the introduction, we will

compare primarily against approximate algorithms. The best
of those are all able to solve GapSS, thus making it easy to
draw comparisons. The methods known as Bit Sampling [30]
and SimHash (Hyperplane rounding) [49], while sometimes
better than MinHash[11] and Chosen Path [14] are always
worse (theoretically) that Spherical LSF, so we won’t per-
form a direct comparison to those.

It should be noted that both Chosen Path and Spherical
LSF both have proofs of optimality in the restricted models.
However these proofs translated to only a certain region of
the (wq, wu, w1, w2) space, and so they may nearly always
be improved.

Arguably the largest break-through in Locality Sensitive
Hashing, LSH, based data structures was the introduction
of data-dependent LSH [19], [9], [50]. It was shown how
to reduce the general case to an instance in which many
LSH schemes work better. Using those data structures on
GapSS with w2 > wqwu will often yield better performance
than the algorithms described in this paper. However, in the
“random instance” case w2 = wqwu, which is the main
focus of this paper, data-dependency has no effect, and so
this issue won’t show up much in our comparisons.

We note that even without a reduction to the random
instance, for many practical uses, it is natural to assume such
“independence” between the query and most of the dataset.
Arguably this is the main reason why approximate similarity
search algorithms have gained popularity in the first place. In
practice, some algorithms for Set Similarity Search take spe-
cial care to handle “skew” data distributions [51], [52], [53],
in which some elements of the Universe are heavily over or
under-represented. This reduces the remaining dataset to a
random instance.

Many of the algorithms, based on the LSH framework,
all had space usage roughly n1+ρ and query time nρ

for the same constant ρ. This is known as the “balanced
regime” or the “LSH regime”. Time/space trade-offs are
important, since n1+ρ can sometimes be too much space,
even for relatively small ρ. Early work on this was done by
Panigrahy [16] and Kapralov [54] who gave smooth trade-
offs ranging from space n1+o(1) to query time no(1). A
breakthrough was the use of LSF (rather than LSH), which
allowed time/space trade-offs with sublinear query time even
for near linear space and small approximation [17], [23],
[18].

Comparison to Spherical LSF: We use “Spherical LSF”
as a term for the algorithms [24] and [17], but in particular
section 3 of [10], which has the most recent version. The
algorithm solves the (r, cr)-Approximate Near Neighbour
problem, in which we, given a dataset Y ⊆ Rd and a query
q ∈ Rd must return y ∈ Y such that ‖q − y‖ < cr or
determinate that there is no y′ ∈ Y with ‖y − q‖ ≤ r.
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Figure 2: Comparison to Spherical LSF: Plots of the achiev-
able ρq (time exponent) and ρu (space exponent) achievable
with Theorem 1. The plots are drawn in the “random
setting”, w2 = wqwu where Spherical LSF and Data-
Dependent LSH coincide.

The algorithm is a tree over the points, P . At each
node they sample T i.i.d. Gaussian d-dimensional vectors
z1, . . . , zT and split the dataset up into (not necessarily
disjoint) “caps” Pi = {p ∈ P | 〈zi, p〉 ≥ tu}. They continue
recursively and independently until the expected number
of leaves shared between two points at distance ≥ cr is
≈ n−1+ε.

The real algorithm also samples includes some caps that
are dependent on an analysis of the dataset. This allows
obtaining a query time of n1/(2c2−1), for all values of r,
rather than only in the “random instance”, which, for data on
the sphere, corresponds to r = 1/(

√
2c). (To see this, notice

that rc = 1/
√

2, which is the expected distance between two
orthogonal points on a sphere.)

Whether we analyse the data-independent algorithm or
not, however, a key property of Spherical LSF is that each
node in the tree is independent of the remaining nodes.
This allows a nice inductive analysis. In comparison, in
our algorithm, the nodes are not independent. Whether a
certain node gets pruned, depends on which elements from
the universe were sampled at all the previous nodes along
the path from the root. One could imagine doing Spherical

LSF with a running total of inner products along each path,
which would make the space partition more smooth, and
possible better in practice. Something along these lines was
indeed suggested in [24], however it wasn’t analysed, as
for Spherical LSF the inner products at each node are
continuous, and the thresholds can be set at any precision.

It is clear that Spherical LSF can solve GapSS – one
simply needs an embedding of the sets onto the sphere. The
embedding x 7→ x/‖x‖2 was considered by [14] while other
authors have considered x 7→ (2x − 1)/

√
d and various

asymmetric embeddings [55]. We would like to find the
most efficient embedding to get a fair comparison. However,
we don’t know how to do this optimally over all possible
embeddings, which include using MinHash and possibly
somehow emulating Supermajorities.13 We instead show that
the embedding x 7→ (x − w)/

√
w(1− w) is the the most

efficient affine embedding. The proof can be found in the
full version [22]. In Figure 2 and Figure 3 the ρ-values of
Spherical LSF are obtained using this optimal embedding.

From the figures, we see the two main cases in which
Spherical LSF is suboptimal. As the sets get very small
(wq, wu, w1 → 0) the ρ value in the LSH regime goes
to 1, whereas Supermajorities (as well as MinHash and
Chosen Path) still obtain good performance. Similarly in
the asymmetric case wq 6= wu, as we make ρq very small,
the performance gap between Supermajorities and Spherical
LSF can grow to arbitrarily large polynomial factors.

Comparison to MinHash: Given a random function
h : P({1, . . . , d}) → [0, 1], the MinHash algorithm hashes
a set x ⊆ {1, . . . , d} to mh(x) = arg mini∈x h(i). One
can show that Pr[mh(x) = mh(y)] = J(x, y) = |x∩y|

|x∪y| .
Using the LSH framework by Indyk and Motwani [30]
this yields a data structure for Approximate Set Similarity
Search over Jaccard similarity, J , with query time dnρ

and space usage n1+ρ + dn, where ρ = log j1
log j2

and j1
and j2 define the gap between “good” and “bad” search
results. As Jaccard similarity is a set similarity measure, it
is clear that MinHash yields a solution to the GapSS problem
with ρq = ρu = log w1

wq+wu−w1

/
log w2

wq+wu−w2
. Similarly,

and that any solution to GapSS can yield a solution to
Approximate SSS over Jaccard similarity.

MinHash has been very popular, since it gives a good,
all-round algorithm for Set Similarity Search, that is easy to
implement. In Figure 3 we see how MinHash performant for
different settings of GapSS. In particular we see that when
solving the Superset Search problem, which is a common use
case for MinHash, our new algorithm obtains quite a large
polynomial improvement, except when the Jaccard similarity
between the query and the sought after superset is nearly 0
(which is hardly an interesting situation.)

13We would also need some sort of limit on how much time the
embedding takes to perform.
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Figure 3: Comparison to MinHash: Varying the Jaccard
similarity, j1, among close sets, while fixing the exponent of
MinHash at ρ = .5 in the subset search instance, wq = w1.

MinHash is quite different from the other algorithms
considered in this section. For some more intuition of why
MinHash is not optimal for Approximate Set Similarity
Search, we show in the full paper [22] that MinHash can
be seen as an average of a family of Chosen Path like
algorithms. We also show that an average is always worse
than simply using the best family member, which implies
that MinHash is never optimal.

Comparison to Chosen Path: The Chosen Path algo-
rithm of [14], is virtually identical to Supermajorities, when
parametrized with tq = tu = 1. Similar to Spherical LSF
and our decoding algorithm, they build a tree on the datasets.
For each node they sample iid. Elements x1, x2, · · · ∈ U
from the universe, and split the data into (not necessarily
disjoint) subsets Pi = {p ∈ P | xi ∈ p}. They again
continue recursively and independently until the expected
number of leaves shared between two dissimilar points is
sufficiently small.

The case tq = tu = 1 however, turns out to be a very
special case of our algorithm, because one can decide which
leaves of the tree to prune, without knowledge of what
happened previously on the path from the root to the node.
This allows a nice inductive analysis of Chosen Path based
on second moments, which is a classic example literature on

branching processes. Meanwhile, for our general algorithm,
we need to analyse the resulting branching random walk, a
conceptually much different beast.

Doing the analysis, one gets a data structure for Approx-
imate Set Similarity Search over Braun-Blanquet similarity,
B(x, y) = |x∩y|

max{|x|,|y|} , with query time |q|nρ and auxil-
iary space usage n1+ρ, where ρ = log b1

log b2
and b1 and b2

define the gap between “good” and “bad” search results.
Since tq = tu = 1 is sometimes the optimal choice for
Supermajorities, it is clear that we must sometimes coincide
in performance with Chosen Path. In particular, this happens
as wq = wu and wq, wu, w1 → 0. This is also one of the case
where our lower bound Theorem 2 is sharp, which confirms,
in addition to the lower bound in [14] that both algorithms
are sharp for LSF data structures in this setting.

In the case wq = wu the ρ value of Chosen Path
can be equivalently written in terms of Jaccard similarities
as log 2j1

1+j1

/
log 2j2

1+j2
, which is always smaller than the

log j1
/

log j2 obtained by MinHash. (This value, 2j/(1+j),
is also known as the Sørensen-Dice coefficient of two sets.)
However, in the case wq 6= wu Chosen Path can be much
worse than MinHash. In [14] it was left as an open problem
whether MinHash could be improved upon in general. It is
a nice result that the balanced ρ value of Supermajorities
(when ρq = ρu) can be shown (numerically) to always
be less than or equal to log 2j1

1+j1

/
log 2j2

1+j2
, even when

wq 6= wu.
Partial Match (PM) and Super-/Subset queries (SQ):

Partial Match asks to pre-process a database D of n points
in {0, 1}d such that, for all query of the form q ∈ {0, 1, ∗}d,
either report a point x ∈ D matching all non-∗ characters
in q or report that no such x exists. A related problem is
Super-/Subset queries, in which queries are on the form q ∈
{0, 1}d, and we must either report a point x ∈ D such that
x ⊆ q (resp. q ⊆ x) or report that no such x exists. Folklore
reductions show that they are all equivalent to the subset
query problem.

The classic approach, studied by Rivest [56], is to split
up database strings like supermajority and file them
under s, u, p etc. Then when given query like set we
take the intersection of the lists s, e, t. Sometimes this can
be done faster than brute force searching each list. He also
considered the space heavy solution of storing all subsets,
and showed that when d ≤ 2 log n, the trivial space bound
of 2d can be somewhat improved.

Indyk, Charikar and Panigrahy [57] also studied the
exact version of the problem, and gave, for each c ∈ [n],
an algorithm with O(n/2c) time and n2O(d log2 d

√
c/ logn)

space, and another with O(dn/c) query time and ndc space.
Their approach was a mix between the shingling method
of Rivest, building a look-up table of size ≈ 2Ω(d), and a
brute force search. These bounds manage to be non-trivial
for d = ω(log n), however only slightly. (e.g. n/ poly(log n)



time with polynomial space.)
There has also been a large number of practical papers

written on Partial Match / Subset queries or the equivalent
batch problem of subset joins [58], [59], [60], [61], [62].
Most of these use similar methods to the above, but save
time and space in various places by using bloom filters and
sketches such as MinHash [11] and HyperLogLog [63].

F. Conclusion

The full paper, besides proofs of the above claims, con-
tains further reductions showing the relation to MinHash
and other well known schemes. By showing that superma-
jorities solve set similarity optimally for any set similarity
measure, we not only unify and explain the performance of
the previous literature, but also recover major performance
improvements and space/time trade-offs.

REFERENCES

[1] S.-S. Choi, S.-H. Cha, and C. C. Tappert, “A survey of bi-
nary similarity and distance measures,” Journal of Systemics,
Cybernetics and Informatics, vol. 8, no. 1, pp. 43–48, 2010.

[2] L. Jia, L. Zhang, G. Yu, J. You, J. Ding, and M. Li, “A survey
on set similarity search and join.” International Journal of
Performability Engineering, vol. 14, no. 2, 2018.

[3] R. Williams, “A new algorithm for optimal 2-constraint satis-
faction and its implications,” Theoretical Computer Science,
vol. 348, no. 2, pp. 357–365, 2005.

[4] T. D. Ahle, R. Pagh, I. Razenshteyn, and F. Silvestri, “On the
complexity of inner product similarity join,” in Proceedings
of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems. ACM, 2016, pp. 151–164.

[5] A. Abboud, A. Rubinstein, and R. Williams, “Distributed pcp
theorems for hardness of approximation in p,” in 2017 IEEE
58th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE, 2017, pp. 25–36.

[6] L. Chen and R. Williams, “An equivalence class for orthog-
onal vectors,” in Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms. SIAM, 2019, pp.
21–40.

[7] S. Har-Peled, P. Indyk, and R. Motwani, “Approximate near-
est neighbor: Towards removing the curse of dimensionality.”
Theory of computing, vol. 8, no. 1, pp. 321–350, 2012.

[8] T. Christiani, R. Pagh, and M. Thorup, “Confirmation sam-
pling for exact nearest neighbor search,” arXiv preprint
arXiv:1812.02603, 2018.

[9] A. Andoni and I. Razenshteyn, “Optimal data-dependent
hashing for approximate near neighbors,” in Proceedings of
the Forty-Seventh Annual ACM Symposium on Theory of
Computing. ACM, 2015, pp. 793–801.

[10] A. Andoni, T. Laarhoven, I. Razenshteyn, and E. Waingarten,
“Optimal hashing-based time-space trade-offs for approxi-
mate near neighbors,” in Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms. So-
ciety for Industrial and Applied Mathematics, 2017, pp. 47–
66.

[11] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig,
“Syntactic clustering of the web,” Computer Networks and
ISDN Systems, vol. 29, no. 8-13, pp. 1157–1166, 1997.

[12] A. Z. Broder, “On the resemblance and containment of
documents,” in Compression and Complexity of Sequences
1997. Proceedings. IEEE, 1997, pp. 21–29.
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