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Abstract

We formulate and optimally solve a new generalized Set Similarity Search problem, which
assumes the size of the database and query sets are known in advance. By creating polylog
copies of our data-structure, we optimally solve any symmetric Approximate Set Similarity
Search problem, including approximate versions of Subset Search, Maximum Inner Product
Search (MIPS), Jaccard Similarity Search and Partial Match.

Our algorithm can be seen as a natural generalization of previous work on Set as well as
Euclidean Similarity Search, but conceptually it differs by optimally exploiting the information
present in the sets as well as their complements, and doing so asymmetrically between queries
and stored sets. Doing so we improve upon the best previous work: MinHash [J. Discrete
Algorithms 1998], SimHash [STOC 2002], Spherical LSF [SODA 2016, 2017] and Chosen Path
[STOC 2017] by as much as a factor n0.14 in both time and space; or in the near-constant time
regime, in space, by an arbitrarily large polynomial factor.

Turning the geometric concept, based on Boolean supermajority functions, into a practical
algorithm requires ideas from branching random walks on Z2, for which we give the first non-
asymptotic near tight analysis.

Our lower bounds follow from new hypercontractive arguments, which can be seen as char-
acterizing the exact family of similarity search problems for which supermajorities are optimal.
The optimality holds for among all hashing based data structures in the random setting, and
by reductions, for 1 cell and 2 cell probe data structures. As a side effect, we obtain new
hypercontractive bounds on the directed noise operator T p1→p2

ρ .

∗A previous version of this manuscript has appeared on arXiv.org under the title “Subsets and Supermajorities:
Unifying Hashing-based Set Similarity Search”.
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1 Introduction

Set Similarity Search (SSS) is the problem of indexing sets (or sparse boolean data) to allow fast
retrieval of sets, similar under a given similarity measure. The sets may represent one-hot encodings
of categorical data, “bag of words” representations of documents, or “visual/neural bag of words”
models, such as the Scale-invariant feature transform (SIFT), that have been discretized. The
applications are ubiquitous across Computer Science, touching everything from recommendation
systems to gene sequences comparison. See [26, 40] for recent surveys of methods and applications.

Set similarity measures are any function, s that takes two sets and return s value in [0, 1].
Unfortunately, most variants of Set Similarity Search, such as Partial Match, are hard to solve
assuming popular conjectures around the Orthogonal Vectors Problem [67, 5, 1, 25], which roughly
implies that the best possible algorithm is to not build an index, and “just brute force” scan through
all the data, on every query. A way to get around this is to study Approximate SSS: Given a query,
q, for which the most similar set y has similarity(q, y) ≥ s1, we are allowed to return any set y′

with similarity(q, y′) > s1, where s2 < s1. In practice, even the best exact algorithms for similarity
search use such an (s1, s2)-approximate1 solution as a subroutine [29].

1By classical reductions [38] we can assume s1 is known in advance.
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Euclidean Similarity Search, where the data is vectors x ∈ Rd and the measure of similarity
is “Cosine”, has recently been solved optimally — at least in the model of hashing based data
structures [11, 9]. Meanwhile, the problem on sets has proven much less tractable. This is despite
that the first solutions date back to the seminal MinHash algorithm (a.k.a. min-wise hashing),
introduced by Broder et al. [21, 20] in 1997 and by now boasting thousands of citations. In 2014
MinHash was shown to be near-optimal for set intersection estimation [55], but in a surprising
recent development, it was shown not to be optimal for similarity search [28]. The question thus
remained: What is the optimal algorithm for Set Similarity Search?

The question is made harder by the fact that previous algorithms study the problem under
different similarity measures, such as Jaccard, Cosine or Braun-Blanquet similarity. The only thing
those measures have in common is that they can be defined as a function f of the sets sizes, the
universe size and the intersection size. In other words, similarity(q, y) = f(|q|, |y|, |q∩y|, |U |) where
|U | is the size of the universe from which the sets are taken. In fact, any symmetric measure of
similarity for sets must be defined by those four quantities.

Hence, to fully solve Set Similarity Search, we avoid specifying a particular similarity measure,
and instead define the problem solely from those four parameters. This generalized problem is what
we solve optimally in this paper, for all values of the four parameters:

Definition 1 (The (wq, wu, w1, w2)-GapSS problem). Given some universe U and a collection
Y ⊆

(
U

wu|U |
)

of |Y | = n sets of size wu|U |, build a data structure that for any query set q ∈
(

U
wq |U |

)
:

either returns y′ ∈ Y with |y′∩q| > w2|U |; or determines that there is no y ∈ Y with |y∩q| ≥ w1|U |.

For the problem to make sense, we assume that wq|U | and wu|U | are integers, that wq, wu ∈ [0, 1],
and that 0 < w2 < w1 ≤ min{wq, wu}. Note that |U | may be very large, and as a consequence the
values wq, wu, w1, w2 may all be very small.

At first sight, the problem may seem easier than the version where the sizes of sets may vary.
However, the point is that making polylog(n) data-structures for sets and queries of progressively
bigger sizes,2 immediately yields data structures for the original problem. Similarly, any algorithm
assuming a specific set similarity measure also yields an algorithm for (wq, wu, w1, w2)-GapSS, so
our lower bounds too hold for all previously studied SSS problems.

Example 1 As an example, assume we want to solve the Subset Search Problem, in which we,
given a query q, want to find a set y in the database, such that y ⊆ q. If we allow a two-approximate
solution, GapSS includes this problem by setting w1 = wu and w2 = w1/2: The overlap between
the sets must equal the size of the stored sets; and we are guaranteed to return a y′ such that at
least |q ∩ y′| ≥ |y|/2.

Example 2 In the (j1, j2)-Jaccard Similarity Search Problem, given a query, q, we must find y
such that the Jaccard Similarity |q∩ y|/|q∪ y| > j2 given that a y′ exists with similarity at least j1.

After partitioning the sets by size, we can solve the problem using GapSS by setting w1 =
j1(wq+wu)

1+j1

and w2 =
j2(wq+wu)

1+j2
. The same reduction works for any other similarity measure with polylog(n)

overhead.

The version of this problem where w2 = wqwu is similar to what is in the literature called “the
random instance” [56, 44, 10]. To see why, consider generating n− 1 sets independently at random
with size wu|U |, and a “planted” pair, (q, y), with size respectively wq|U | and wu|U | and with

2For details, see [28] Section 5. A similar reduction, called “norm ranging”, was recently shown at NeurIPS to
give state of the art results for Maximum Inner Product Search in Rd [69], suggesting it is very practical.
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(a) Two cohorts, y and q with a large
intersection (blue). The first representa-
tive set, s, favours y, while the second, s′,
favours both y and q.

q

y

(b) Branching random walk run on two cohorts q and y. The
bold lines illustrate paths considered by sets, while the dashed
lines adorn paths only considered by only one of x or y. Here q
has a higher threshold (tq = 2/3) than y (tu = 1/2), so q only
considers paths starting with two favourable representatives.

Figure 1: The representative sets, coloured in red, are scattered in the universe to provide an
efficient space partition for the data.

intersection |q ∩ y| = w1|U |. Insert the size wu|U | sets into the database and query with q. Since
q is independent from the n − 1 original sets, its intersection with those is strongly concentrated
around the expectation wqwu|U |. Thus, if we parametrize GapSS with w2 = wqwu+o(1), the query
for q is guaranteed to return the planted set y.

There is a tradition in the Similarity Search literature for studying such this independent case,
in part because it is expected that one can always reduce to the random instance, for example using
the techniques of “data-dependent hashing” [8, 11]. However, for such a reduction to make sense,
we would first need an optimal “data-independent” algorithm for the w2 = wqwu case, which is
what we provide in this paper. We discuss this further in the Related Work section.

For generality we still define the problem for all w2 ∈ (0, w1), our upper bound holds in this
general setting and so does the lower bound Theorem 2.

We give our new results in Section 1.2 and our new lower bounds in Section 1.3, but first we
would like to sketch the algorithm and some probabilistic tools used in the theorem statement.

1.1 Supermajorities

In Social Choice Theory a supermajority is when a fraction strictly greater than 1/2 of people agree
about something.3 In the analysis of Boolean functions a t-supermajority function f : {0, 1}n →
{0, 1} can be defined as 1, if a fraction ≥ t of its arguments are 1, and 0 otherwise. We will
sometimes use the same word for the requirement that a fraction ≤ t of the arguments are 1.4

The main conceptual point of our algorithm is the realization that an optimal algorithm for Set
Similarity Search must take advantage of the information present in the given sets, as well as that
present in their complement. A similar idea was leveraged by Cohen et al. [30] for Set Similarity
Estimation, and we show in Section 4.2 that the classical MinHash algorithm can be seen as an
average of functions that pull varying amounts of information from the sets and their complements.

3“America was founded on majority rule, not supermajority rule. Somehow, over the years, this has morphed into
supermajority rule, and that changes things.” – Kent Conrad.

4It turns out that defining everything in terms of having a fraction t± o(1) of 1’s is also sufficient. This is similar
to Dubiner [33].
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In this paper, we show that there is a better way of combining this information, and that doing
so results in an optimal hashing based data structure for the entire parameter space of random
instance GapSS.

This way of combining this information is by supermajority functions. While on the surface they
will seem similar to the threshold methods applied for time/space trade-offs in Spherical LSF [9],
our use of them is very different. Where [9] corresponds to using small t = 1/2 + o(1) thresholds
(essentially simple majorities) our t may be as large as 1 (corresponding to the AND function) or
as small as 0 (the NOT AND function). This way they are a sense as much a requirement on the
complement as it is on the sets themselves.

The algorithm (idealized): While our data structure is technically a tree with a carefully designed
pruning rule, the basic concept is very simple.

We start by sampling a large number of “representative sets” R ⊆
(
U
k

)
. Here roughly |R| ≈ nlogn

and k ≈ log n. Given family Y ⊆
(

U
wu|U |

)
of sets to store, which we call “cohorts”, we say that

r ∈ R “t-favours” the cohort y if |y ∩ r|/|r| ≥ t. Representing sets as vectors in {0, 1}d, this is
equivalent to saying ft(r ∩ y) = 1, where ft is the t-supermajority function. (If t is less than wu,
the expected size of the overlap, we instead require |y ∩ r|/|r| ≤ t.)

Given the parameters tq, tu ∈ [0, 1], the data-structure is a map from elements of R to the
cohorts they tu-favour. When given a query q ∈

(
U

wq |U |
)
, (a wq|U | sized cohort), we compare it

against all cohorts y favoured by representatives r ∈ R which tq-favour q (that is |q ∩ r|/|r| ≥ tq).
This set Rtq(q) is much smaller than |R| (we will have |Rtq(q)| ≈ nε and E[|Rtu(y)∩Rtq(q)|] ≈ nε−1),
so the filtering procedure greatly reduces the number of cohorts we need to compare to the query
from n to nε (where ε = ρq < 1 is defined later.)

The intuition is that while it is quite unlikely for a representative to favour a given cohort,
and it is very unlikely for it to favour two given cohorts (q and y). So if it does, the two cohorts
probably have a substantial overlap. Figure 1a has a simple illustration of this principle.

In order to fully understand supermajorities, we want to understand the probability that a
representative set is simultaneously in favour of two distinct cohorts given their overlap and repre-
sentative sizes. This paragraph is a bit technical, and may be skipped at first read. Chernoff bounds
in R are a common tool in the community, and for iid. Xi ∼ Bernoulli(p) ∈ {0, 1} the sharpest
form (with a matching lower bound) is Pr[

∑
Xi ≥ tn] ≤ exp(−n d(t ‖ p)),5 which uses the binary

KL-Divergence d(t ‖ p) = t log t
p + (1− t) log 1−t

1−p . The Chernoff bound for R2 is less common, but
likewise has a tight description in terms of the KL-Divergence between two discrete distributions:
D(P ‖Q) =

∑
ω∈Ω P (ω) log P (ω)

Q(ω) (summing over the possible events). In our case, we represent the

four events that can happen as we sample an element of U as a vector Xi ∈ {0, 1}2. Here Xi = [ 1
1 ]

means the ith element hit both cohorts, Xi = [ 1
0 ] means it hit only the first and so on. We repre-

sent the distribution of each Xi as a matrix P =
[

w1 wq−w1

wu−w1 1−wq−wu+w1

]
, and say Xi ∼ Bernoulli(P )

iid. such that Pr[Xi = [ 1−j
1−k ]] = Pj,k. Then Pr[

∑
Xi ≥ [ tqtu ]n] ≈ exp(−nD(T ‖P )) where

T =
[

t1 tq−t1
tu−t1 1−tq−tu+t1

]
and t1 ∈ [0,min{tu, tq}] minimizes D(T ‖P ). (Here the notation [ xy ] ≥ [ tutq ]

means x ≥ tu ∧ y ≥ tq.)
The optimality of Supermajorities for Set Similarity Search is shown using a certain correspon-

dence we show between the Information Theoretical quantities described above, and the hypercon-
tractive inequalities that have been central in all previous lower bounds for similarity search.

These bounds above would immediately allow a cell probe version of our upper bound Theo-

5A special case of Hoeffding’s inequality is obtained by d(p+ ε ‖ p) ≥ 2ε2, Pinsker’s inequality.

5



rem 1, e.g. a query would require n
D(T1 ‖P1)−d(tq ‖wq)
D(T2 ‖P2)−d(tq ‖wq) probes, where Pi =

[
wi wq−w1

wu−wi 1−wq−wu+wi

]
and

Ti defined accordingly. The algorithmic challenge is that, for optimal performance, |R| must be
in the order of Ω(nlogn), and so checking which representatives favour a given cohort takes super
polynomial time!

The classical approach to designing an oracle to efficiently yield all such representatives, , is a
product-code or “tensoring trick”. The idea, (used by [27, 16]), is to choose a smaller k′ ≈

√
k,

make k/k′ different R′i sets of size n
√

logn and take R as the product R′1×· · ·×R′k/k′ . As each R′ can

now be decoded in no(1) time, so can R. This approach, however, in the case of Supermajorities,
has a big drawback: Since tqk

′ and tuk
′ must be integers, tq and tu have to be rounded and thus

distorted by a factor 1+1/k′. Eventually, this ends up costing us a factor w
−k/k′
1 which can be much

larger than n. For this reason, we need a decoding algorithm that allows us to use supermajorities
with as large a k as possible!

We instead augment the above representative sampling procedure as follows: Instead of inde-
pendent sampling sets, we (implicitly) sample a large, random height k tree, with nodes being
elements from the universe. The representative sets are taken to be each path from the root to a
leaf. Hence, some sets in R share a common prefix, but mostly they are still independent. We then
add the extra constraint that each of the prefixes of a representative has to be in favour of a cohort,
rather than only having this requirement on the final set. This is the key to making the tree useful:
Now given a cohort, we walk down tree, pruning any branches that do not consistently favour a
supermajority of the cohort. Figure 1b has a simple illustration of this algorithm and Algorithm 1
has a pseudo-code implementation. This pruning procedure can be shown to imply that we only
spend time on representative sets that end up being in favour of our cohort, while only weakening
the geometric properties of the idealized algorithm negligibly.

While conceptually simple and easy to implement (modulo a few tricks to prevent dependency
on the size of the universe, |U |), the pruning rule introduces dependencies that are quite tricky
to analyze sufficiently tight. The way to handle this will be to consider the tree as a “branching
random walk” over Z2

+ where the value represents the size of the representative’s intersection with
the query and a given set respectively. The paths in the random walk at step i must be in the
quadrant [tqi, i]× [tui, i] while only increasing with a bias of [ wqwu ] per step. The branching factor is
carefully tuned to just the right number of paths survive to the end.

The “history” aspect of the pruning is a very important property of our algorithm, and is where it
conceptually differs from all previous work.

Previous Locality Sensitive Filtering, LSF, algorithms [28, 10] can be seen as trees with pruning,
but their pruning is on the individual node level, rather than on the entire path. This makes a
big difference in which space partitions can be represented, since pruning on node level ends up
representing the intersection of simple partitions, which can never represent Supermajorities in an
efficient way. In [16] a similar idea was discussed heuristically for Gaussian filters, but ultimately
tensoring was sufficient for their needs, and the idea was never analyzed.

1.2 Upper Bounds

As discussed, the performance of our algorithm is described in terms of KL-divergences. To ease
understanding, we give a number of special cases, in which the general bound simplifies. The
bounds in this section assume wq, wu, w1, w2 are constants. See Section 2.1 for a version without
this assumption.
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Theorem 1 (Simple Upper Bound). For any choice of constants wq, wu ≥ w1 ≥ w2 ≥ 0 and
1 ≥ tq, tu ≥ 0 we can solve the (wq, wu, w1, w2)-GapSS problem over universe U with query time
Õ(nρq + wq|U |) + no(1) and auxiliary space usage Õ(n1+ρu), where

ρq =
D(T1 ‖P1)− d(tq ‖wq)
D(T2 ‖P2)− d(tq ‖wq)

, ρu =
D(T1 ‖P1)− d(tu ‖wu)

D(T2 ‖P2)− d(tq ‖wq)
.

and T1, T2 are distributions with expectation [ tqtu ] minimizing respectively D(T1 ‖P1) and D(T2 ‖P2),
as described in Section 1.1.

The two bounds differ only in the d(tq ‖wq) and d(tu ‖wu) terms in the numerator. The thresh-
olds tq and tu can be chosen freely in [0, 1]2. Varying them compared to each other allows a full
space/time trade-off with ρq = 0 in one end and ρu = 0 (and ρq < 1) in the other. Note that for a
given GapSS instance, there are many (tq, tu) which are not optimal anywhere on the space/time
trade-off. Using Lagrange’s condition ∇ρq = λ∇ρu one gets a simple equation that all optimal
(tq, tu) trade-offs must satisfy. As we will discuss later, it seems difficult to prove that a solution to
this equation is unique, but in practice it is easy to solve and provides an efficient way to optimize
ρq given a space budget n1+ρu . Figure 2 and Figure 3 provides some additional intuition for how
the ρ values behave for different settings of GapSS.

Regarding the other terms in the theorem, we note that the Õ hides only log n factors, and the
additive no(1) term grows as eO(

√
logn log logn), which is negligible unless ρq = 0. We also note that

there is no dependence on |U |, other than the need to store the original dataset and the additive
wq|U |, which is just the time it takes to receive the query. The main difference between this theorem
and the full version, is that the full theorem does not assume the parameters (wq, wu, w1, w2) are
constants, but consider them potentially very small. In this more realistic scenario it becomes very
important to limit the dependency on factors like w−1

1 , which is what guides a lot of our algorithmic
decisions.

Example 1: Near balanced ρ values. As noted, many pairs (tq, tu) are not optimal on the
trade-off, in that one can reduce one or both of ρq, ρu by changing them. The pairs that are optimal
are not always simple to express, so it is interesting to study those that are. One such particularly
simple choice on the Lagrangian is tq = 1−wu and tu = 1−wq.6 This point is special because the
values of tq and tu depend only on wu and wq, while in general they will also depend on w1 and

w2. In this setting we have Ti =
[

1−wq−wu+wi wu−wi
wu−wi wi

]
, which can be plugged into Theorem 1.

In the case wq = wu = w we get the balanced ρ values ρq = ρu = log(w1
w

1−w
1−2w+w1

)/ log(w2
w

1−w
1−2w+w2

)

in which case it is simple to compare with Chosen Path’s ρ value of log(w1
w )
/

log(w2
w ). Chosen Path

on balanced sets was shown in [28] to be optimal for w,w1, w2 small enough, and we see that
Supermajorities do indeed recover this value for that range.

We give a separate lower bound in Section 3.4 showing that this value is in fact optimal when
w2 = wqwu.

Example 2: Subset/superset queries. If w1 = min{wu, wq} and w2 = wuwq we can take tq =
−α

wq−wu +
wq(1−wu)
wq−wu and tu =

wu(1−wu)wq(1−wq)
wq−wu α−1− wu(1−wq)

wq−wu for any α ∈ [w1−wqwu, max{wu, wq}−

6To make matters complicated, this is a simple choice and on the Lagrangian, but that doesn’t prove another
point on the Lagrangian won’t reduce both ρq and ρu and thus be better. That we have a matching lower bound
for the algorithm doesn’t help, since it only matches the upper bound for (tq, tu) minimal in Theorem 1. In the case
wq = wu we can, however, prove that this tq, tu pair is optimal.
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wqwu]. Theorem 1 then gives data structures with

ρq =
tq log 1−tu

1−wu − tu log
1−tq
1−wq

d(tu ‖wu)
ρu =

(1− tu) log
tq
wq
− (1− tq) log tu

wu

d(tu ‖wu)
if w1 = wu,

ρq =
−(1− tu) log

tq
wq

+ (1− tq) log tu
wu

d(tu ‖wu)
ρu =

−tq log 1−tu
1−wu + tu log

1−tq
1−wq

d(tu ‖wu)
if w1 = wq.

This represents one of the cases where we can solve the Lagrangian equation to get a complete
characterization of the tq, tu values that give the optimal trade-offs. Note that when w1 = wu
or w1 = wq, the P matrix as used in the theorem has 0’s in it. The only way the KL-divergence
D(T ‖P ) can then be finite is by having the corresponding elements of T be 0 and use the fact that
0 log 0

q is defined to be 0 in this context.

Example 3: Linear space/constant time. Setting t1 in T1 =
[

t1 tq−t1
tu−t1 1−tq−tu+t1

]
such that

either t1
w1

=
tq−t1
wq−w1

or t1
w1

= tu−t1
wu−w1

we get respectively D(T1 ‖P1) = d(tq ‖wq) or D(T1 ‖P1) =

d(tu ‖wu). Theorem 1 then yields algorithms with either ρq = 0 or ρu = 0 corresponding to either

a data structure with ≈ eÕ(
√

logn) query time, or with Õ(n) auxiliary space. Like [9] we have ρq < 1
for any parameter choice, even when ρu = 0. For very small wq and wu < exp(−

√
log n) there are

some extra concerns which are discussed after the main theorem.

1.3 Lower Bounds

Results on approximate similarity search are usually phrased in terms of two quantities: (1) The
“query exponent” ρq ∈ [0, 1] which determines the query time by bounding it by O(nρq); (2) The
“update exponent” ρu ∈ [0, 1] which determines the time required to update the data structure
when a point is inserted or deleted in Y and is given by O(nρu). The update exponent also bounds
the space usage as O(n1+ρu). Given parameters (wq, wu, w1, w2), the important question is for
which pairs of (ρq, ρu) there exists data structures. E.g. given a space budget imposed by ρu, we
ask how small can one make ρq?

Since the first lower bounds on Locality Sensitive Hashing [49], lower bounds for approximate
near neighbours have split into two kinds: (1) Cell probe lower bounds [57, 58, 9] and (2) Lower
bounds in restricted models [52, 13, 9, 28]. The most general such model for data-independent
algorithms was formulated by [9] and defines a type of data structure called “list of points”:

Definition 2 (List-of-points). Given some universes, Q, U , a similarity measure S : Q×U → [0, 1]
and two thresholds 1 ≥ s1 > s2 ≥ 0,

1. We fix (possibly random) sets Ai ⊆ {−1, 1}d, for 1 ≤ i ≤ m; and with each possible query
point q ∈ {−1, 1}d, we associate a (random) set of indices I(q) ⊆ [m];

2. For a given dataset P , we maintain m lists of points L1, L2, . . . , Lm, where Li = P ∩Ai.

3. On query q, we scan through each list Li for i ∈ I(q) and check whether there exists some
p ∈ Li with S(q, p) ≥ s2. If it exists, return p.

The data structure succeeds, for a given q ∈ Q, p ∈ P with S(q, p) ≥ s1, if there exists i ∈ I(q)
such that p ∈ Li. The total space is defined by S = m +

∑
i∈[m] |Li| and the query time by

T = |I(q)|+
∑

i∈I(q) |Li|.
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The List-of-points model contains all known Similarity Search data structures, except for the
so-called “data-dependent algorithms”. It is however conjectured [10] that data-dependency does
not help on random instances (recall this corresponds to w2 = wqwu), which is the setting of
Theorem 3.

We show two main lower bounds: (1) That requires wq = wu and ρq = ρu and (2) That requires
w2 = wqwu. The second type is tight everywhere, but quite technical. The first type meanwhile is
quite simple to state, informally:

Theorem 2. If wq = wu = w and ρu = ρq = ρ, any data-independent LSF data structure must use

space n1+ρ and have query time nρ where ρ ≥ log( w1−w2

w(1−w))
/

log( w2−w2

w(1−w)) .

The LSF Model defined in [16, 28] generalizes [49, 54], but is slightly stronger than list-of-
points. It is most likely that they are equivalent, so we defer its definition till Definition 4.
We will just note that previous bounds of this type [54, 28] were only asymptotic, whereas our
lower bound holds over the entire range of 0 < w2 < w1 < w < 1. By comparison with
ρ = log( w1(1−w)

w(1−2w+w1))/ log( w2(1−w)
w(1−2w+w2)) from Example 1 in the Upper Bounds section, we see that

the lower bound is sharp when w,w1, w2 → 07 and also for w1 → w, since w(1 − 2w + w1) =
w(1− w)− w(w − w1). However, for w2 = w2 (the random instance), Theorem 2 just says ρ ≥ 0,
which means it tells us nothing.

For the random instances, we give an even stronger lower bound, which gets rid of the restrictions
wq = wu and ρq = ρu. This lower bound is tight for any 0 < wqwu < w1 < min{wq, wu} in the
list-of-points model.

Theorem 3. Consider any list-of-point data structure for the (wq, wu, w1, wqwu)-GapSS problem
over a universe of size d of n points with wqwud = ω(log n), which uses expected space n1+ρu, has
expected query time nρq−on(1), and succeeds with probability at least 0.99. Then for every α ∈ [0, 1]
we have that

αρq + (1− α)ρu ≥ inf
tq ,tu∈[0,1]
tu 6=wu

(
α

D(T ‖P )− d(tq ‖wq)
d(tu ‖wu)

+ (1− α)
D(T ‖P )− d(tu ‖wu)

d(tu ‖wu)

)
,

where P =
[

w1 wq−w1

wu−w1 1−wq−wu+w1

]
and T = arg inf

T�P, E
X∼T

[X]=[
tq
tu

]

D(T ‖P ).

Note that for w2 = wqwu, the term D(T2 ‖P2), in Theorem 1, splits into d(tq ‖wq) + d(tu ‖wu),
and so the upper and lower bounds perfectly match. This shows that for any linear combination of
ρq and ρu our algorithm obtains the minimal value. By continuity of the terms, this equivalently
states as saying that no list-of-points algorithm can get a better query time than our Theorem 1,
given a space budget imposed by ρu. 8

Example 1: Choices for tq and tu. As in the upper bounds, it is not easy to prove that a
particular choice of tq and tu minimizes the lower bound. One might hope that having corresponding
lower and upper bounds would help in this endeavour, but alas both results have a minimization.

7As w,w1, w2 → 0 we recover the lower bound ρ ≥ log(w1
w

)
/

log
(
w2
w

)
obtained for Chosen Path in [28].

8It is easy to see that ρu = 0 minimizes αρq + (1 − α)ρu when α = 0, and similarly ρu = ρmax minimizes
αρq + (1− α)ρu when α = 1, where ρmax is the minimal space usage when ρq = 0. Furthermore, we note that when
we change α from 0 to 1, then ρu will continuously and monotonically go from 0 to ρmax. This shows that for every
ρu ∈ [0, ρmax] there exists an α such that αρq + (1− α)ρu is minimized, where ρq is best query time given the space
budget imposed by ρu.
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E.g. setting tq = 1−wu and tu = 1−wq the expression in Theorem 3 we obtain the same value as
in Theorem 1, however it could be (though we strongly conjecture not) that another set of values
would reduce both the upper and lower bound.

The good news is that the hypercontractive inequality by Oleszkiewicz [53], can be used to
prove certain optimal choices on the space/time trade-off.9 In particular we will show that for
wq = wu = w the choice tq = tu = 1 − w is optimal in the lower bound, and matches exactly the

value ρ = log
(

w1(1−w)
w(1−2w+w1)

)
/ log( w2(1−w)

w(1−2w+w2)
) from Example 1 in the Upper Bounds section.

Example 2: Cell probe bounds Panigrahy et al. [57, 58, 42] created a framework for showing
cell probe lower bounds for problems like approximate near-neighbour search and partial match
based on a notion of “robust metric expansion”. Using the hypercontractive inequalities shown in
this paper with this framework, as well (as the extension by [9]), we can show, unconditionally, that
no data structure, which probes only 1 or 2 memory locations10, can improve upon the space usage
of n1+ρu obtained by Theorem 1 as we let ρq = 0. In particular, this shows that the near-constant
query time regime from Example 3 in the Upper Bounds is optimal up to no(1) factors in time and
space.

1.4 Technical Overview

The contributions of the paper are conceptual as well as technical. To a large part, what enables
tight upper and lower parts is defining the right problem to study. The second part is realizing
which geometry is going to work and proving it in a strong enough model. Lastly, a number of
tricky algorithmic problems arise, requiring a novel algorithm and a new analysis of 2-dimensional
branching random walks of exponentially tilted variables.

Supermajorities – why do they work? Representing sets x ⊆ U as a vector x ∈ {0, 1}|U | and
scaling by 1/

√
|x|, we get ‖x‖2 = 1, and it is natural to assume the optimal Similarity Search data

structure for data on the unit-sphere — Spherical LSF — should be a good choice. Unfortunately
this throws away two key properties of the data: that the vectors are sparse, and that they are
non-negative. Algorithms like MinHash, which are specifically designed for this type of data, take
advantage of the sparsity by entirely disregarding the remaining universe, U . This is seen by the
fact that adding new elements to U never changes the MinHash of a set. Meanwhile Spherical LSF
takes the inner product between x and a Gaussian vector scaled down by 1/

√
|U |, so each new

element added to U , in a sense, lowers the “sensitivity” to x.
In an alternative situation we might imagine |x| being nearly as big as |U |. In this case we

would clearly prefer to work with U \x, since information about an element that is left out, is much
more valuable than information about an element contained in x. What Supermajorities does can
be seen as balancing how much information to include from x with how much to include from U \x.
A very good example of this is in Section 4.2, which shows how to view MinHash as an average
of simple algorithms that sample a specific amount from each of x and U \ x. Supermajorities,
however, does this in a more clever way, that turns out to be optimal. A crucial advantage is the
knowledge of the size of x, as well as the future queries, which allow us to use different thresholds
on the storage and query side, each which is perfectly balanced to the problem instance.

9The generalizations by Wolff [68] could in principle expand this range, but they are only tight up to a constant
in the exponent.

10For 1 probe, the word size can be no(1), whereas for the 2 probe argument, the word size can only be o(logn) for
the lower bound to hold.
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As an interesting side effect, the extra flexibility afforded by our approach allows balancing the
time required to perform queries with the size of the database. It is perhaps surprising that this
simple balancing act is enough to be optimal across all hashing algorithms as well as 1 cell and 2
cell probe data structures.

The results turn out to be best described in terms of the KL-divergences D(T ‖P )− d(tq ‖wq)
and D(T ‖P )− d(tu ‖wu), which are equivalent to D(TXY ‖PY |XTX) and D(TXY ‖PX|Y TY ). Here
PXY is the distribution of a coordinated sample from both a query and a dataset, PX and PY
are the marginals, and TXY is roughly the distribution of samples conditioned on having a shared
representative set. Intuitively these describe the amount of information gained when observing a
sample from TXY given a belief that X (resp. Y ) is distributed as T and Y (resp. X) is distributed
as P . In this framework, Supermajorities can be seen as a continuation of the Entropy LSH
approach by [56].

Branching Random Walks Making Supermajorities a real algorithm (rather than just cell
probe), requires, as discussed in the introduction, an efficient decoding algorithm of which rep-
resentative sets overlap with a given cohort. Previous LSF methods can be seen as trees, with
independent pruning in each leaf, going back to the LSH forest in 2005 [15, 12]. Our method is
the first to significantly depart from this idea: While still a tree, our pruning is highly dependent
across the levels of the tree, carrying a state from the root to the leaf which needs be considered
by the pruning as well as the analysis. In “branching random walk”, the state is represented in the
“random walk”, while the tree is what makes it branching. While considered heuristically in [16],
such a stateful oracle has not before been analysed, partly because it wasn’t necessary. For Super-
majorities, meanwhile, it is crucially important. The reason is that failure of the “tensoring trick”
employed previously in the literature, when working with thresholds.

The approach from [7, 16, 9] when applied to our scheme would correspond to making our

representatives have size just
√
k (so there are only |R′| ≈ eÕ(

√
logn) of them,) and then make

R′⊗
√
k our new R. Since R′ can be decoded in no(1) time, and the second step can be made to take

only time proportional to the output, this works well for some cases. This approach has two main
issues: (1) There is a certain overhead that comes from not using the optimal filters, but only an

approximation. However, this gives only a factor eÕ(
√

logn), which is usually tolerated. Worse is
(2): Since the thresholds tqk and tuk have to be integral, using representative sets of size

√
k means

we have to “repair” them by a multiplicative distortion of approximately 1 ± 1/
√
k, compared to

1 ± 1/k for the “real” filters. This turns out to cost as much as w−
√
k

1 which can easily be much
larger than the polynomial cost in n. In a sense, this shows that supermajority functions must be
applied to measure the entire representative part of a cohort at once! This makes tensoring not
well fit for our purposes.

A pruned branching random walk on the real line can be described in the following way. An
initial ancestor is created with value 0 and form the zeroth generation. The people in the ith
generation give birth ∆ times each and independently of one another to form the (i+1)th generation.
The people in the (i + 1)th generation inherit the value, v, of their parent plus an independent
random variable X. If ever v+X < 0, the child doesn’t survive. After k generations, we expect by
linearity ∆k Pr[∀i≤k

∑
j∈[i]Xi ≥ 0] people to be alive, where Xi are iid. random variables as used

in the branching. A pruned 2d-branching random walk is simply one using values ∈ R2.
Branching random walks have been analysed before in the Brownian motion literature [63]. They

are commonly analysed using the second-moment method, however, as noted by Bramson [18]: “an
immediate frontal assault using moment estimates, but ignoring the branching structure of the
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process, will fail.” The issue is that the probability that a given pair of paths in the branching
process survives is too large for standard estimates to succeed. If the lowest common ancestor
of two nodes manages to accumulate much more wealth than expected, its children will have a
much too high chance of surviving. For this reason we have to counterintuitively add extra pruning
when proving the lower bound that a representative set survives. More precisely, we prune all the
paths that accumulate much more than the expected value. We show that this does not lower
the probability that a representative set is favour by much, while simultaneously decreasing the
variance of the branching random walk a lot. Unfortunately, this adds further complications, since
ideally, we would like to prune every path that gets below the expectation. Combined with the
upper bound this would trap the random walks in a band to narrow to guarantee the survival of
a sufficient number of paths. Hence instead, we allow the paths to deviate by roughly a standard
deviation below the expectation.

Exponential Tilting and Non-asymptotic Central Limit Lemmas for Random Walks
To analyse our algorithm, we need probability bounds for events such as “survival of k generations”
that are tight up to polynomial factors. This contrast with many typical analysis approaches in
Computer Science, such as Chernoff bounds, which only need to be tight up to a constant in the
exponent. We also can’t use Central Limit type estimates, since they either are asymptotic (which
correspond to assuming wq and wu are constants) or too weak (such as Berry Esseen) or just don’t
apply to random walks.

The technical tool we employ is “Exponential Tilting”, which allows coupling the real pruned
branching random walk to one that is much more well behaved. This can be seen as a nicer way of
conditioning the random walk on succeeding. This nicer random walk then needs to be analysed
for properties such as “probability that the path is always above the mean.” This is shown using
a rearrangement lemma, known as the Truck Driver’s Lemma: Assume a truck driver must drive
between locations l1, l2, . . . , ln, l1. At stop i they pick up gi gas, and between stop i and i+ 1 they
expand ei gas. The lemma say, that if the sum of gi − ei is non-negative, then there is a starting
position j ∈ {1, . . . , n} so that the driver’s gas level never goes below 0.

This lemma gives an easy proof that a random walk on R+ of n identically distributed steps,
must be always non-negative with probability at least 1/n times the probability that it is eventually
non-negative. That’s because, if the location is eventually non-negative, and all arrangements of
steps happen with the same probability, then we must hit the “always non-negative” rotation with
probability ≥ 1/n.

Extending this argument to two dimensions turns out to require a few extra conditions, such
as a positive correlation between the coordinates, but as a surprisingly key result, we manage to
show Lemma 2.5, which says that for k ∈ Z+ and p, p1, p2 ∈ [0, 1], such that, pk, p1k, and p2k are
integers and p ≥ p1p2. Let X(i) ∈ {0, 1}2 be independent identically distributed variables. We then
get that

Pr

∀l ≤ k :
∑
i∈[k]

X(i) ≥ [ p1p2 ] l

∣∣∣∣∣∣
∑
i∈[k]

X(i) = [ p1p2 ] k ∧
∑
i∈[k]

X
(i)
1 X

(i)
2 = pk

 ≥ k−3 .

Output-sensitive set decoding In our algorithm we are careful to not have factors of |U | and
|X| (the size of the sets) on our query time and space bounds. When sampling our tree, at each
level we must pick a certain number, ∆, of elements from the universe and check which of them are
contained in the set being decoded. This is an issue, since ∆ may be much bigger than X ∩∆, and
so we need an “output-sensitive” sampling procedure. We do this by substituting random sampling
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with a two-independent hash function h : Uk → [q], where q is a prime number close to |U |. The
sampling criterion is then h(r ◦ x) ≤ ∆, where ◦ is string concatenation. The function h(r) can be
taken to be

∑k
i=1 aixi + b (mod q) for random values a1, . . . , ak, b ∈ [q], so we can expand h(r ◦ x)

as h(r) + akx (mod q).
Now

{x ∈ X | (h(r ◦ x) mod q) < ∆} = {x ∈ X | (h(r) + akx mod q) < ∆}
= ∪∆−1

i=0 {x ∈ X | akx ≡ ∆− h(r) mod q}
= {x ∈ X | (akx mod q) ∈ [−h(r),∆− h(r)] mod q},

where the last equation is adjusted in case (−h(r) mod q) > (∆−h(r) mod q). By pre-computing
{akx mod q | x ∈ X} (just has to be done one for each of roughly log n levels in the tree), and
storing the result in a predecessor data-structure (or just sorting it), the sampling can be done it
time proportional to the size of its output.

Lower Bounds and Hypercontractivity The structure of our lower bounds is by now stan-
dard: We first reduce our lower bound to random instances by showing that with high proba-
bility the random instances are in fact an instance of our problem. For this to work, we need
ww |U | = ω(log n) and in particular |U | = ω(log n), so we get concentration around the mean. This
requirement is indeed known to be necessary, since the results of [16, 22] break the known lower
bounds in the “medium dimension regime” when |U | = O(log n).

The main difference compared to previous bounds is that we study Boolean functions on so-
called p-biased spaces, where the previous lower bounds used Boolean functions on unbiased spaces.
This is necessary for us to lower bound every parameter choice for GapSS. In particular we are
interested in tight hypercontractive inequalities on p-biased spaces. We say that a distribution PXY
on a space ΩX × ΩY is (r, s)-hypercontractive if

E
(X,Y )∼PXY

[f(X)g(Y )] ≤ E
X∼PX

[f(X)r]1/r E
Y∼PY

[g(Y )s]1/s ,

for all functions f : ΩX → R and g : ΩY → R, where PX and PY are the marginal distributions on
the spaces ΩX and ΩY respectively. On unbiased spaces, the classic Bonami-Beckner inequality [19,
17] gives a complete understanding of the hypercontractivity. Unfortunately, this is not the case for
p-biased spaces where the hypercontractivity is much less understood, with [53] and [68] being state
of the art. We sidestep the issue of finding tight hypercontractive inequalities by instead showing
an equivalence between hypercontractivity and KL-divergence, which is captured in the following
lemma:11

Lemma 1.1. Let PXY be a probability distribution on a space ΩX ×ΩY and let PX and PY be the
marginal distributions on the spaces ΩX and ΩY respectively. Let s, r ∈ [1,∞), then the following
is equivalent

1. For all functions f : ΩX → R and g : ΩY → R,

E
(X,Y )∼PXY

[f(X)g(Y )] ≤ E
X∼PX

[f(X)r]1/r E
X∼PY

[g(Y )s]1/s .

2. For all probability distributions QXY � PXY ,

D(QXY ‖PXY ) ≥ D(QX ‖PX)

r
+

D(QY ‖PY )

s
,

where QX and QY be the marginal distributions on the spaces ΩX and ΩY respectively
11It appears that one might prove a similar result using [50] and [36].
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The main technical argument needed for proving Lemma 1.1 is that, for all probability distri-
butions P,Q, where Q is absolutely continuous with respect to P, and all functions φ,

D(Q‖P) + log E
X∼P

[exp(φ(X))] ≥ E
X∼Q

[φ(X)] .

This can be seen as a version of Fenchel’s inequality, which says that f(x) + f∗(p) ≥ xp for all
convex functions f, f∗, where f∗ is convex conjugate of f , and all x, p ∈ R.

We use Lemma 1.1 together with the “Two-Function Hypercontractivity Induction Theorem” [52],
which shows that if P⊗nXY is (r, s)-hypercontractive if and only if PXY is (r, s)-hypercontractive. This

implies that E(X,Y )∼P⊗nXY
[f(X)g(Y )] ≤ EX∼P⊗nX

[f(X)r]1/r EX∼P⊗nY
[g(Y )s]1/s for all functions f, g

if and only D(QXY ‖PXY ) ≥ D(QX ‖PX)
r + D(QY ‖PY )

s for all probability distributions QXY . In

the proof of Theorem 3 we have PXY =
[

w1 wq−w1

wu−w1 1−wq−wu+w1

]
and consider all the probability

distributions of the form QXY = arg inf
QXY�PXY , E

X∼QXY
[X]=[

tq
tu

]

D(QXY ‖PXY ) for tq, tu ∈ [0, 1].

The obtained inequalities can be used directly with the framework by Panigrahy et al. [57] to
obtain bounds on “Robust Expansion”, which has been shown to give lower bounds for 1-cell and
2-cell probe data structures, with word size no(1) and o(log n) respectively.

The Directed Noise Operator We extend the range of our lower bounds further, by studying
a recently defined generalization of the p-biased noise operator [4, 2, 45, 43]. This “Directed

Noise Operator”, T p1→p2ρ : L2({0, 1}d , π⊗dp1 )→ L2({0, 1}d , π⊗dp2 ) has the property ̂T p1→p2ρ f
(p2)

(S) =

ρ|S|f̂ (p1)(S) for any S ⊆ [d], where f̂ (p)(S) denotes the p-biased Fourier coefficient of f . Just like
the Ornstein Uhlenbeck operator, we show that T p2→p3σ T p1→p2ρ = T p1→p3ρσ and that T p2→p1ρ is the
adjoint of T p1→p2ρ . By connecting this operator to our hypercontractive theorem, we can integrate
the results by Oleszkiewicz and obtain provably optimal points on the (tq, tu) trade-off.

We show that for p-biased distributions over {0, 1}n, we can add the following line to the list
of equivalent statements in Lemma 1.1:

3. For all functions f : {0, 1}n → R it holds ‖T p1→p2ρ f‖Ls′ (p1) ≤ ‖f‖Lr(p2).

The operator allows us to prove some optimal choices for r and s in Lemma 1.1 (and by effect for
tq and tu.) Following [4] we use Pareseval’s identity, to write ‖T p1→p2ρ f‖2L2(p2) as

̂T p1→p2ρ f
(p2)

(∅)2 + ̂T p1→p2ρ f
(p2)

({1})2 = f̂ (p1)(∅)2 + ρ2f̂ (p1)({1})2 = ‖T p1→p1f‖2L2(p1) ≤ ‖f‖
2
Lr(p1) ,

where r is perfectly determined by Oleszkiewicz in [53]. It is possible to prove further lower bounds
using Hölder’s inequality on T , however the bounds obtained this way turn out to be optimal
only in the case s = 2 or r = 2 that also follow from Parseval. A particular simple case is
r = s =, wq = wu = w, and w2 = w2, in which case the arguments above gives the lower bound

ρ ≥ log( w1(1−w)
w(1−2w+w1))/ log(1−w

w ) mentioned in Example 1 in the Upper Bounds section.
Another use of T is in proving lower bounds outside of the random instance w2 = wqwu regime.

Using the power means inequality over p-biased Fourier coefficients, we show the relation(
〈T p→pα f, f〉L2(p)/ ‖f‖2L2(p)

)1/ log(1/α)
≤
(
〈T p→pβ f, f〉L2(p)/ ‖f‖2L2(p)

)1/ log(1/β)
.

which is allows comparing functions under two different noise levels. This is stronger than hy-
percontractivity, even though we can prove it in fewer instances. The proof can been seen as a
variation of [54] and we get a lower bound with a similar range, but without asymptotics and for
Set Similarity instead of Hamming space Similarity Search.
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1.5 Related Work

For the reasons laid out in the introduction, we will compare primarily against approximate solu-
tions. The best of those are all able to solve GapSS, thus making it easy to draw comparisons. The
guarantees of these algorithms are listed in Table 1 and we provide plots in Figure 2 and Figure 3
for concreteness.

The methods known as Bit Sampling [39] and SimHash (Hyperplane rounding) [24], while
sometimes better than MinHash[21] and Chosen Path [28] are always worse (theoretically) that
Spherical LSF, so we won’t perform a direct comparison to those.

It should be noted that both Chosen Path and Spherical LSF both have proofs of optimal-
ity in the restricted models. However these proofs translated to only a certain region of the
(wq, wu, w1, w2) space, and so they may nearly always be improved.

Arguably the largest break-through in Locality Sensitive Hashing, LSH, based data structures
was the introduction of data-dependent LSH [8, 11, 12]. It was shown how to reduce the general
case of α, β similarity search as described above, to the case (α, β) 7→ (α−β1−β , 0), in which many LSH
schemes work better. Using those data structures on GapSS with w2 > wqwu will often yield better
performance than the algorithms described in this paper. However, in the “random instance” case
w2 = wqwu, which is the main focus of this paper, data-dependency has no effect, and so this issue
won’t show up much in our comparisons.

We note that even without a reduction to the random instance, for many practical uses, it
is natural to assume such “independence” between the query and most of the dataset. Arguably
this is the main reason why approximate similarity search algorithms have gained popularity in
the first place. In practice, some algorithms for Set Similarity Search take special care to handle
“skew” data distributions [61, 70, 47], in which some elements of the Universe are heavily over or
under-represented. By special casing those elements, those algorithms can be seen as reducing the
remaining dataset to the random instance. Curiously, even the early research on Partial Match by
Ronald Rivest in his PhD thesis [62], studied the problem on random data.

Many of the algorithms, based on the LSH framework, all had space usage roughly n1+ρ and
query time nρ for the same constant ρ. This is known as the “balanced regime” or the “LSH
regime”. Time/space trade-offs are important, since n1+ρ can sometimes be too much space, even
for relatively small ρ. Early work on this was done by Panigrahy [56] and Kapralov [41] who gave
smooth trade-offs ranging from space n1+o(1) to query time no(1). A breakthrough was the use of
LSF (rather than LSH), which allowed time/space trade-offs with sublinear query time even for
near linear space and small approximation [44, 27, 10].

We finally compare our results to the classical literature on Partial Match and Super-/Subset
search, which has some intriguing parallels to the work presented here.

Comparison to Spherical LSF We use “Spherical LSF” as a term for the algorithms [16]
and [44], but in particular section 3 of [9], which has the most recent version. The algorithm solves
the (r, cr)-Approximate Near Neighbour problem, in which we, given a dataset Y ⊆ Rd and a query
q ∈ Rd must return y ∈ Y such that ‖q − y‖ < cr or determinate that there is no y′ ∈ Y with
‖y − q‖ ≤ r.

The algorithm is a tree over the points, P . At each node they sample T i.i.d. Gaussian d-
dimensional vectors z1, . . . , zT and split the dataset up into (not necessarily disjoint) “caps” Pi =
{p ∈ P | 〈zi, p〉 ≥ tu}. They continue recursively and independently until the expected number of
leaves shared between two points at distance ≥ cr is ≈ n−1+ε.
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Method Balanced ρq = ρu Space/time trade-offs

Spherical LSF
[66, 44, 27, 9]

1− α
1 + α

1 + β

1− β
ρq = (1−α1+λ)2

1−α2
1−β2

(1−αλβ)2
(∗∗∗)

ρu = (1−α1+λ)2

1−α2
1−β2

(1−αλβ)2

MinHash [21]
log w1

wq+wu−w1

log w2
wq+wu−w2

Same as above(∗) with
α = w1

wq+wu−w1
, β = w2

wq+wu−w2

Chosen Path [28]
log w1

max{wq ,wu}

log w2
max{wq ,wu}

N/A

Supermajorities

(This paper)

Theorem 1,

Example 1
Theorem 1

Data-Dependent LSF
[11, 9]

1− α
1 + α− 2β

√
ρq + α′

√
ρu =

√
1− α′2

where α′ = 1− 1−α
1−β

SimHash [24]
log(1− arccos(α)/π)

log(1− arccos(α)/π)
N/A(∗∗)

Bit Sampling [39]
log(1− wq − wu + 2w1)

log(1− wq − wu + 2w2)
N/A(∗∗)

Table 1: Time and space exponents for the best similarity search data-structures. For Spherical
LSF and SimHash, α and β are the inner products between sets represented as vectors, and can by
Lemma 4.1 be taken to be α =

w1−wqwu√
wq(1−wq)wu(1−wu)

and β =
w2−wqwu√

wq(1−wq)wu(1−wu)
.

(∗): Space/time trade-offs for MinHash can be obtained using MinHash as an embedding for Spher-
ical LSF. (∗∗): Some space/time trade-offs can be obtained for LSH using Multi-probing [46].
(∗∗∗): λ ∈ [−1, 1] controls the space/time trade-off.
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(b) Example with larger sets of different sizes.

Figure 2: Comparison to Spherical LSF: Plots of the achievable ρq (time exponent) and ρu (space
exponent) achievable with Theorem 1. Note that using our optimal spherical embedding from
Lemma 4.1 is critical to achieve the exponents shown for Spherical LSF. The plots are drawn in
the “random setting”, w2 = wqwu where Spherical LSF and Data-Dependent LSH coincide.
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The real algorithm also samples includes some caps that are dependent on an analysis of the
dataset. This allows obtaining a query time of n1/(2c2−1), for all values of r, rather than only in
the “random instance”, which, for data on the sphere, corresponds to r = 1/(

√
2c). (To see this,

notice that rc = 1/
√

2, which is the expected distance between two orthogonal points on a sphere.)
Whether we analyse the data-independent algorithm or not, however, a key property of Spherical

LSF is that each node in the tree is independent of the remaining nodes. This allows a nice inductive
analysis. In comparison, in our algorithm, the nodes are not independent. Whether a certain node
gets pruned, depends on which elements from the universe were sampled at all the previous nodes
along the path from the root. One could imagine doing Spherical LSF with a running total of inner
products along each path, which would make the space partition more smooth, and possible better
in practice. Something along these lines was indeed suggested in [16], however it wasn’t analysed,
as for Spherical LSF the inner products at each node are continuous, and the thresholds can be set
at any precision.

It is clear that Spherical LSF can solve GapSS – one simply needs an embedding of the sets
onto the sphere. An obvious choice is x 7→ x/‖x‖2. This was used in [28] when comparing Chosen
Path to Spherical LSF. However it is also clear that the choice of embedding matters on the
performance one gets out of Spherical LSF. Other authors have considered x 7→ (2x− 1)/

√
d and

various asymmetric embeddings [64].
We would like to find the most efficient embedding to get a fair comparison. However, we don’t

know how to do this optimally over all possible embeddings, which include using MinHash and
possibly somehow emulating Supermajorities.12 We instead find the most efficient affine embed-
ding, which turns out to be surprisingly simple, and which encompasses all previously suggested
approaches. In Lemma 4.1 we prove a general result, implying that the embedding is optimal for
Spherical LSF as well as other spherical data structures like SimHash. In Figure 2 and Figure 3
the ρ-values of Spherical LSF are obtained using this optimal embedding.

From the figures, we see the two main cases in which Spherical LSF is suboptimal. As the sets
get very small (wq, wu, w1 → 0) the ρ value in the LSH regime goes to 1, whereas Supermajorities (as
well as MinHash and Chosen Path) still obtain good performance. Similarly in the asymmetric case
wq 6= wu, as we make ρq very small, the performance gap between Supermajorities and Spherical
LSF can grow to arbitrarily large polynomial factors.

Comparison to MinHash Given a random function h : P({1, . . . , d}) → [0, 1], the MinHash
algorithm hashes a set x ⊆ {1, . . . , d} to mh(x) = arg mini∈x h(i). One can show that Pr[mh(x) =

mh(y)] = J(x, y) = |x∩y|
|x∪y| . Using the LSH framework by Indyk and Motwani [39] this yields a data

structure for Approximate Set Similarity Search over Jaccard similarity, J , with query time dnρ

and space usage n1+ρ+dn, where ρ = log j1
log j2

and j1 and j2 define the gap between “good” and “bad”
search results. As Jaccard similarity is a set similarity measures, it is clear that MinHash yields a
solution to the GapSS problem with ρq = ρu = log w1

wq+wu−w1

/
log w2

wq+wu−w2
. Similarly, and that

any solution to GapSS can yield a solution to Approximate SSS over Jaccard similarity.
MinHash has been very popular, since it gives a good, all-round algorithm for Set Similarity

Search, that is easy to implement. In Figure 3 we see how MinHash performant for different settings
of GapSS. In particular we see that when solving the Superset Search problem, which is a common
use case for MinHash, our new algorithm obtains quite a large polynomial improvement, except
when the Jaccard similarity between the query and the sought after superset is nearly 0 (which is
hardly an interesting situation.)

12We would also need some sort of limit on how much time the embedding takes to perform.
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(a) Varying the Jaccard similarity, j1, among close
sets, while fixing the exponent of MinHash at ρ = .5
in the subset search instance, wq = w1. The plot
shows the case of balanced exponents, ρq = ρu, be-
tween queries and updates.
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(b) Varying the overlap w1 among close sets while
fixing the query and database set sizes. Note that at
w1 = w2 = .002 there is no gap between close and far
sets, and so all algorithms have exponents ρ = 1.

Figure 3: Comparison to MinHash: Varying different parameters while searching on a background
of random sets (w2 = wqwu), Supermajorities regularly get substantially better time and space
exponents. The plots are drawn in the “random setting”, w2 = wqwu and use the optimal embedding
for Spherical LSF.
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Figure 4: Comparison to Chosen Path: Fixing wq and the Jaccard similarity so w1 = j1
1+j1

(wq+wu),
we vary wu to see the performance of different algorithms at different levels of asymmetry in the
set sizes. The plots are drawn in the “random setting”, w2 = wqwu and use the optimal embedding
for Spherical LSF.

It is possible to use MinHash as an embedding (or densification) of sets into Hamming space or
onto the Sphere. We can then use Spherical LSF to get space/time trade-offs. We have not plotted
those, but we can notice that in the balanced case, ρq = ρu, this would give ρ = 1−j1

1+j1
1+j2
1−j2 , which is

worse than ρ = log j1/ log j2 obtained by the direct algorithm.
MinHash is quite different from the other algorithms considered in this section. For some

more intuition of why MinHash is not optimal for Approximate Set Similarity Search, we show in
Section 4.2 that MinHash can be seen as an average of a family of Chosen Path like algorithms.
We also show that an average is always worse than simply using the best family member, which
implies that MinHash is never optimal.

Comparison to Chosen Path The Chosen Path algorithm of [28], is virtually identical to
Supermajorities, when parametrized with tq = tu = 1. Similar to Spherical LSF and our decoding
algorithm, they build a tree on the datasets. For each node they sample iid. Elements x1, x2, · · · ∈ U
from the universe, and split the data into (not necessarily disjoint) subsets Pi = {p ∈ P | xi ∈ p}.
They again continue recursively and independently until the expected number of leaves shared
between two dissimilar points is sufficiently small.

The case tq = tu = 1 however, turns out to be a very special case of our algorithm, because one
can decide which leaves of the tree to prune, without knowledge of what happened previously on
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the path from the root to the node. This allows a nice inductive analysis of Chosen Path based on
second moments, which is a classic example literature on branching processes. Meanwhile, for our
general algorithm, we need to analyse the resulting branching random walk, a conceptually much
different beast.

Doing the analysis, one gets a data structure for Approximate Set Similarity Search over Braun-
Blanquet similarity, B(x, y) = |x∩y|

max{|x|,|y|} , with query time |q|nρ and auxiliary space usage n1+ρ,

where ρ = log b1
log b2

and b1 and b2 define the gap between “good” and “bad” search results. Since
tq = tu = 1 is sometimes the optimal choice for Supermajorities, it is clear that we must sometimes
coincide in performance with Chosen Path. In particular, this happens as wq = wu and wq, wu, w1 →
0. This is also one of the case where our lower bound Theorem 2 is sharp, which confirms, in addition
to the lower bound in [28] that both algorithms are sharp for LSF data structures in this setting.
Figure 2a shows how Chosen Path does nearly as well as Supermajorities on very small sets.

In the case wq = wu the ρ value of Chosen Path can be equivalently written in terms of
Jaccard similarities as log 2j1

1+j1

/
log 2j2

1+j2
, which is always smaller than the log j1

/
log j2 obtained

by MinHash. (This value, 2j/(1 + j), is also known as the Sørensen-Dice coefficient of two sets.)
However, in the case wq 6= wu Chosen Path can be much worse than MinHash, as seen in Figure 2b
and Figure 3a. In [28] it was left as an open problem whether MinHash could be improved upon
in general. It is a nice result that the balanced ρ value of Supermajorities (when ρq = ρu) can be
shown (numerically) to always be less than or equal to log 2j1

1+j1

/
log 2j2

1+j2
, even when wq 6= wu. It

is a curious problem for which similarity measure, S, so the balanced ρ value of Supermajorities
equal log s1/ log s2.

Partial Match (PM) and Super-/Subset queries (SQ) Partial Match asks to pre-process a
database D of n points in {0, 1}d such that, for all query of the form q ∈ {0, 1, ∗}d, either report a
point x ∈ D matching all non-∗ characters in q or report that no such x exists. A related problem
is Super-/Subset queries, in which queries are on the form q ∈ {0, 1}d, and we must either report
a point x ∈ D such that x ⊆ q (resp. q ⊆ x) or report that no such x exists.

The problems are equivalent to the subset query problem by the following folklore reductions:
(PM → SQ) Replace each x ∈ D by the set {(i, pi) : i ∈ [d]}. Then replace each query q by
{(i, qi) : qi = ∗}. (SQ → PM) Keep the sets in the database as vectors and replace in each query
each 0 by an ∗.

The classic approach, studied by Rivest [62], is to split up database strings like supermajority

and file them under s, u, p etc. Then when given query like set we take the intersection of the lists
s, e, t. Sometimes this can be done faster than brute force searching each list. He also considered
the space heavy solution of storing all subsets, and showed that when d ≤ 2 log n, the trivial space
bound of 2d can be somewhat improved. Rivest finally studied approaches based on tries and in
particular the case where most of the database was random strings. The latter case is in some ways
similar to the LSH based methods we will describe below.

Indyk, Charikar and Panigrahy [23] also studied the exact version of the problem, and gave,

for each c ∈ [n], an algorithm with O(n/2c) time and n2(O(d log2 d
√
c/ logn) space, and another with

O(dn/c) query time and ndc space. Their approach was a mix between the shingling method of
Rivest, building a look-up table of size ≈ 2Ω(d), and a brute force search. These bounds manage
to be non-trivial for d = ω(log n), however only slightly. (e.g. n/poly(log n) time with polynomial
space.)

There has also been a large number of practical papers written on Partial Match / Subset
queries or the equivalent batch problem of subset joins [60, 48, 37, 3, 34]. Most of these use similar
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Figure 5: This figure from the Partial Match algorithm of [23] shares some of the same geometrical
intuition visible in our own figure 1a.

methods to the above, but save time and space in various places by using bloom filters and sketches
such as MinHash [21] and HyperLogLog [35].

Maximum Inner Product (MIPS) is the Similarity Search problem with S(x, y) = 〈x, y〉 —
the Euclidean inner product. For exact algorithms, most work has been done in the batch version

(n data points, n queries). Here Alman et al. [6] gave an n2−1/Õ(
√
k) algorithm, when d = k log n.

An approximative version can be defined as: Given c > 1, pre-process a database D of n
points in {0, 1}d such that, for all query of the form q ∈ {0, 1}d return a point x ∈ D such that
〈q, x〉 ≥ 1

c maxx′∈D〈q, x′〉. Here [5] gives a data structure with query time ≈ Õ(n/c2), and [25]

solves the batch problem in time n2−1/O(log c) (both when d is no(1).)
There are a large number of practical papers on this problem as well. Many are based on

the Locality Sensitive Hashing framework (discussed below) and have names such as SIMPLE-
LSH [51] and L2-ALSH [64]. The main problem for these algorithms is usually that no hash family
of functions h : {0, 1}d × {0, 1}d → [m] such that Pr[h(q) = h(x)] = 〈q, x〉/d [5] and various
embeddings and asymmetries are suggested as solutions.

The state of the art is a paper from NeurIPS 2018 [69] which suggests partitioning data by the
vector norm, such that the inner product can be more easily estimated by LSH-able similarities
such as Jaccard. This is curiously very similar to what we suggest in this paper.

We will not discuss these approaches further since, for GapSS, they all have higher exponents
than the three LSH approaches we study next.

2 The Algorithm

We now describe the full algorithm that gives Theorem 1. We state the full version of the theorem,
discuss it and prove it. The section ends with an involved analysis of the survival probabilities of
the branching random walk.

Notationally we define [n] = {1, . . . , n} and let (· ◦ ·) : Al1 ×Al2 → Al1+l2 be the concatenation
operator for any set A and integers l1, l2. We will use the Iversonian bracket, defined by [P ] = 1 if
P and 0 otherwise. For R and U sets, we have R × U = {r ◦ u | r ∈ R, u ∈ U} P(U) is the power
set of U .

The first step is to set up our assumptions. For wq, wu, w1, w2, tq, tu ∈ [0, 1] given, we can
assume min{wq, wu} ≥ w1 > w2 and tq 6= wq, tu 6= wu. We are also given a universe U and a family
Y ⊆

(
U

wu|U |
)

of size |Y | = n.

It will be nice to assume |U | = q where q is a prime number. This can always be achieved
by adding at most |U |0.525 elements to U large enough13 [14]. Hence we only distort each of

13It is an open conjecture by Harald Cramér that (log |U |)2 suffices as well. [31]
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wq, wu, w1, w2 by roughly a factor 1 +O(|U |−1/2), which is insignificant for |U | = Ω(log n)2, and we
can always increase |U | without changing the problem parameters by duplicating the set elements.

Let k ∈ Z+ be defined later. For all i ∈ [k] we define hi(r) : [q]i → [q] by hi(r) =
∑

j∈[i] ai,jrj+bi
mod q for some sequences of random numbers ai,j ∈ [q] \ {0}, bi ∈ [q], such that each hi is a 2-
independent random function. (That means Pr[hi(r) = hi(r

′)] ≤ 1/q for r 6= r′.)
Finally two sequences (∆i ∈ Z+)i∈[k] and (c` ∈ R2)`∈[k] to be specified later. We can now define

the sets Ri = {r ◦ x ∈ Ri−1 × U |hi(r ◦ x) < ∆i} , as well as the decoding functions

Ri(X, t) =

{
r ∈ Ri

∣∣∣∣ ∀` ≤ i :
∑
j∈[`]

[rj ∈ X] ≥ t`− c`
}

Intuitively Ri are our representative sets at level i in the tree, such that Rk is a close to iid. uniform
sample from Uk. The decoding function takes a set X ⊆ U and a value t ∈ [0, 1], and returns all
r ∈ Ri such that all prefixes r′ of r “(t − ε)-favours” X (as defined by |r ∩ X|/|r| ≥ t − ε in the
introduction), where ε =

c|r′|
|r′| is some slack that helps ensure survival of at least one representative

set. The slack won’t be the same on each coordinate, but scaled by their variance. The algorithm
is shown below as pseudo-code in Algorithm 1.

Algorithm 1: Pseudocode for the decoding function R.

Input: Universe U , Set X ⊆ U , Threshold t ∈ [0, 1]
Result: Set Pk ⊆ Uk of paths
R0 ← {((), 0)} // These Ri values contain the paths and scores

for i = 1 to k do
Ri ← {}
for (r, s) ∈ Ri−1 do

for x ∈ U st. hi(r ◦ x) < ∆i do // Sample the universe
s′ ← s+ [x ∈ X]
if s′ ≥ it− ci then // Trim to promising paths

Ri ← Ri ∪ {(r ◦ x, s′)}
end

end

end

end

Our data structure now builds a hash-table M of lists of pointers and store each set y ∈ Y in
M [r] for every r ∈ Rk(y, tu). One can think of this as storing the elements at the leafs of the tree
represented by the sets Ri. On a new query q ∈

(
U

wq |U |
)

we look at every list M [r] for r ∈ Rk(q, tq).
For each y in such a list, we compute the intersection with q and return y if |q ∩ y|/|U | ≥ w2. This
takes time min{wu, wq}|U |, which would be a large multiplicative factor on our query time, so we
may instead choose to sample just

O(min{wq, wu}w−1
2 log n) (1)

elements, which suffices as a test with high probability.
This describes the entire algorithm, exception for an optimization for the “Sample the universe”

step above, which naively implemented would take time |X|. This optimization is the reason |U |
was chosen to be a prime number.
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An optimization In the “Sample the universe” step of Algorithm 1 a naive implementation
spends time |X| hashing all possible elements and comparing their value to ∆i. We now show how
to make this step output sensitive, using only time equal to the number of values for which the
condition is true. 14

The requirement s′ ≥ it − ci we call the “trimming condition”. This allows us to trim away
most prefix paths which would be very unlikely to ever reach our requirement for the final path.
To speed up finding all x ∈ U such that hi(r ◦ x) < ∆i we note that there are two cases relevant
to the trimming condition, depending on s in the algorithm: (1) s′ has to be s + 1 or (2) s′ = s
suffices. In the first case we are only interested in x values in X, while in the second case, all x ∈ U
values are relevant.

We have hi(r ◦ x) = η + ax mod q for some values η, a and b where a > 0. In case (2) the
relevant x are simple {a−1(v − η) mod q | v ∈ [∆i]}, where a−1 exists because q is prime. For
the case (1) where x must be in X, we pre-process X by storing ax mod q for x ∈ X in a sorted
list. Using a single binary search, we can then find the relevant values with a time overhead of
just lg |X|. Using a more advanced predecessor data structure, this overhead can be reduced. See
Algorithm 2 for a pseudocode version of this idea.

Algorithm 2: Output sensitive sample

Input : r ∈ [q], ∆ ∈ [q]
Pre-process: s = sorted{h(x) | x ∈ X} ∈ [q]|X| and κ ∈ X |X| st. h(κ[i]) = s[i].
Result: R = {x ∈ X | (h(x) + r mod q) < ∆}
i← min{i ∈ [|X|] | s[i− 1] < q − r ≤ s[i]} // We assume s[i] = −∞ for i < 0
R← {}
while (s[i mod |X|] + r mod q) < ∆ do

R← R ∪ {κ[i mod |X|]}
i← i+ 1

end

2.1 Full Theorem

We state the full version of Theorem 1 and a discussion of the differences between it and the
idealized version in the introduction.

Theorem 1 (Full version). Let wq, wu ≥ w1 ≥ w2 ≥ 0 be given with w1 ≥ wqwu and 1 ≤ tq, tu ≤ 0.

Set k to be the smallest even integer greater than or equal to logn
D(T2 ‖P2)−d(tq ‖wq) and assume that

tqk/2 and tuk/2 are integers. The (wq, wu, w1, w2)-GapSS problem over a universe U can be solved
with expected query time

query time O
(
ςq k

28 nρq + kwq |U |+
( tq(1−wq)

(1−tq)wq

)√tq(1−tq)k · 6.5 log(3k)))
,

space usage O(ςu k
28 n1+ρu + nwu |U |)

and update time O
(
ςu k

28 nρu + kwu |U |+
( tu(1−wu)

(1−tu)wu

)√tu(1−tu)k · 6.5 log(3k)))
,

14The subroutine is inspired by personal communications with Rasmus Pagh and Tobias Christiani.
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where ρq =
D(T1 ‖P1)− d(tq ‖wq)
D(T2 ‖P2)− d(tq ‖wq)

and ρu =
D(T1 ‖P1)− d(tu ‖wu)

D(T2 ‖P2)− d(tq ‖wq)
,

and ςq =
min{wq ,wu}

w2
e2(D(T1 ‖P1)−d(tq ‖wq)), ςu = e2(D(T1 ‖P1)−d(tu ‖wu)).

We stress that all previous Locality Sensitive algorithms with time/space trade-offs had no(1)

factors on nρq and nρu . These could be as large as exp(
√

log n) or even exp((log n)/(log log n)). In
contrast, our algorithm is the first that only loses k ≈ log(n) multiplicative factors!

In the statement of Theorem 1 we have taken great effort to make sure that any dependence on
wq, wu, w1, w2, tq, tu is visible and only truly universal constants, like 4, are hidden in the O(·).

The main thing we do lose is the additive (
tq(1−wq)
(1−tq)wq )Õ(

√
tq(1−tq)k). We may note the bound

(
tq

1−tq )
√
tq(1−tq) ≤ 2, so the main eyesore is the 1/wq. For wq > e−Õ(

√
logn) this is dominated by

the main term, but for very small sets it could potentially be an issue. However, it turns out that
as wq and wu get small, the optimal choices of tq and tu move towards 0 or 1. Since this effect is

exponentially stronger we get that (1/wq)
√
tq(1−tq) is usually never more than a small constant. It

also means that we recover the performance of Chosen Path in the case tq = 1, tu = 1, which has

no Ω(e
√

logn) terms. 15

In case w−1
q is large, but w2 is not too small, we can reduce w−1

q to wu
w2
k by hashing! Sketch:

Define a hash function h : U → [m] where m = O(
wqwu
w2
|U |k) and map each set y to {i ∈ [m] | ∃e ∈

y : h(e) = i}, that is the OR of the hashed values. With high probability this only distorts the size
of the sets and their inner products by a factor (1 + 1/k) which doesn’t change ρ.

The constants of the size ςq and ςu are standard in all other similar algorithms since [39],
as they come from the requirement that k is an integer. The terms D(T1 ‖P1) − d(tq ‖wq) and
D(T1 ‖P1)− d(tu ‖wu) in ςq and ςu may be bounded by log wu

w1
and log

wq
w1

respectively. The factor
of 2 on those terms come from the tensoring step done on paths of length k/2. This can be
removed at the cost of making the ratio-of-odds term multiplicative in the bounds above. The
factor min{wq, wu}/w2 in ςq comes from equation (1) and is the time it takes to verify a candidate
identified by the filtering. Note that this factor would exist even in a brute force O(n) algorithm
and exists in any data structures known for similar problems. In fact, for small n, it is necessary
due to communication complexity bounds.

Proof of Theorem 1. Let Tq and Tu be the time it takes to compute Rk(x, tq) and Rk(y, tu) on
given sets. When creating the data structure, decoding each y ∈ Y takes time nTu and uses
nE [|Rk(Y, tu)|] words of memory for space equivalent. When querying the data structure we first

use time Tq to decode q, then E [|Rk(X, tq)|] time to look in the buckets, and finally
min{wq ,wu} logn

w2

time on each of E [|Rk(X, tq) ∩Rk(Y, tu)|]n expected collisions with far sets (the worst case is that
we never find any y with y ∩ q > w2|U | so we can’t return early.)

The key to proving the theorem is thus bounding the above quantities. We do this using the
following lemma, which we prove at the end of the section:

Lemma 2.1. In Algorithm 1 let k ∈ Z+ and let wq, wu, w1, w2 ∈ [0, 1] be the Gap-SS parameters
such that w1 ≥ wqwu. Now let tq, tu ∈ [0, 1] be the thresholds such that tqk and tuk are integers, and
let ∆ > 0 be the branching factor. Given a query set X, with |X| = wq |U |, and data set Y ⊆ U ,

with |Y | = wu |U |, then running Algorithm 1 with c` =

[√
tq(1−tq)√
tu(1−tu)

]
·
√

6.5` log(3k) for ` < k and

15The authors know of a way to reduce the error term further, so it only appears in the ρq = 0 case, and only as
exp((log 1/wq)

2/3k1/3) which is o(n) for any wq = ω(1/n).
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ck = [ 0
0 ], gives that

E [|Rk(X, tq)|] ≤ 2∆k exp(−k d(tq ‖wq)) . (2)

E [|Rk(Y, tu)|] ≤ 2∆k exp(−k d(tu ‖wu)) . (3)

Pr [|Rk(X, tq) ∩Rk(Y, tu)| ≥ 1] ≥ 7−8k−14∆k exp(−kD(T1 ‖P1)) if |X ∩ Y | ≥ w1 |U | . (4)

E [|Rk(X, tq) ∩Rk(Y, tu)|] ≤ 2∆k exp(−kD(T2 ‖P2)) if |X ∩ Y | ≤ w2 |U | . (5)

where Pj =
(

wj wq−wj
wu−wj 1−wq−wu+wj

)
, Tj =

(
tj tq−tj

tu−tj 1−tq−tu+tj

)
, tj = arg inf D(Tj ‖Pj) for j ∈ {1, 2}.

Finally the expected running times, Tq and Tu, it takes to compute Rk(X, tq) and Rk(Y, tu)
respectively are bounded by

E [Tq]≤ O
(
k |X|+ k(k + log(n))∆k exp(−k d(tq ‖wq))

(
tq(1−wq)
(1−tq)wq

)(ck)1 )
.

E [Tu]≤ O
(
k |Y |+ k(k + log(n))∆k exp(−k d(tu ‖wu))

(
tu(1−wu)
(1−tu)wu

)(ck)2 )
.

(6)

We define ∆ = exp(D(T1 ‖P1)), and let k be the smallest even integer at least logn
D(T2 ‖P2)−d(tq ‖wq) .

Define the sequence ∆i = 2li for some li ∈ Z≥0 such that
∏i
j=1 ∆j ≤ ∆i < 2

∏i
j=1 ∆j for all i ∈ [k].

We make 2 initiations of Algorithm 1, M1,M2, with height k/2. ∆ and c` are adjusted corre-
spondingly. In we have ck/2 = ck = [ 0

0 ].
For each instance we have

E
[∣∣Rk/2(X, tq)

∣∣] ≤ 2 exp(k/2 D(T1 ‖P1)− k/2 d(tq ‖wq))

≤ 2 exp

((
log n

D(T2 ‖P2)− d(tq ‖wq)
+ 2

)
(D(T1 ‖P1)− d(tq ‖wq))

2

)
= 2n

1
2

D(T1 ‖P1)−d(tq ‖wq)
D(T2 ‖P2)−d(tq ‖wq) (D(T1 ‖P1)− d(tq ‖wq)).

similarly we get

E
[∣∣Rk/2(X, tq)

∣∣] ≤ 2n
1
2

D(T1 ‖P1)−d(tu ‖wu)
D(T2 ‖P2)−d(tq ‖wq) (D(T1 ‖P1)− d(tu ‖wu)).

We combine the two data instances M1 and M2 by taking as representative sets returned the
product of the sets returned by each of them. In particular, this means we successfully find a near
set, if

∣∣Rk/2(X, tq) ∩Rk/2(Y, tu)
∣∣ ≥ 1 for both instances, which happens with probability at least

(7−8k−14∆k exp(−kD(T1 ‖P1)))2 = (7−8k−14)2.

hence, repeating the algorithm Ck28 times, for some C, we can boost this probability to 99%.
Putting it all together now yields the full version of Theorem 1 contingent on Lemma 2.1.

2.2 Bounds on Branching

It now remains to prove Lemma 2.1. The inequalities (2), (3) and (5) are all simple calculations
based on linearity of expectation. The time bound (6) is also fairly simple, but we have to take
the decoding optimization described above into account. We also need to bound the number of
paths alive at some point during the decoding process, which requires being more careful about the
trimming conditions.
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Finally the proof of the probability lower bound (4) is the main star of the section. We do this
using essentially a second-moment method, but a number of tricks are needed in order to squeeze
out acceptable bounds, taking into account that any of wq, wu, w1, w2 may be o(1), which among
other things forbid the use of many Central Limit Theorem type results.

Proof of (2) and (3). We only provide the proof for (2) since the proof (3) is analogous.
Let r ∈ Rk be a representative string and define the random variables X (i) = [ri ∈ X] for i ∈ [k],

because the hash functions hi used at each level of the tree are independent, so are the (X (i))i∈[k]

independent.
We use linearity of expectation, and completely throw away the fact that some branches may

have been cut early. Throwing away extra cuts of course only increases the probability of survival.
Meanwhile, we do not expect to gain more than factors of k this way, compared to a sharp analysis,
since the whole point of the algorithm is to efficiently approximate cuts done only at the leaf level.

E [|Rk(X, tq)|] ≤ |Rk|Pr

∀` ≤ k :
∑
i∈[`]

X (i) ≥ tq`− (c`)1


≤ |Rk|Pr

∑
i∈[k]

X (i) ≥ tqk


≤ |Rk| exp(−k d(tq ‖wq)).

The final bound is the entropy Chernoff bound we use everywhere. Since |Rk| =
∏k
i=1 ∆i ≤ 2∆k

we get the bound.

Proof of (5). This is similar to the proof of (2) and (3), but two dimensional. Like in the those
proofs we consider a single representative string r ∈ Rk and define the random variables X (i) =[

[ri∈X]
[ri∈Y ]

]
for i ∈ [k]. By definition of Algorithm 1 (X (i))i∈[k] are independent.

We then bound using linearity of expectation:

E [|Rk(X, tq) ∩Rk(Y, tu)|] ≤ |Rk|Pr

∀` ≤ k :
∑
i∈[`]

X (i) ≥ [ tqtu ]`− c`


≤ 2∆k Pr

∑
i∈[k]

X (i) ≥ [ tqtu ]k


≤ 2∆k exp(−D(T2 ‖P2))

Proof of (6). As a preprocessing stage we make k sorted lists of (aix)x∈X where ai is the coefficient
in hi(p ◦ x) = h′i(p) + aix mod q, this takes O(k |X|) time.

We will argue that at each level of tree that we only use O(k+log |X|) = O(k+log n) amortized
time per active path. More precisely, at level l we use O((k + log n) |R`(X, tq)|) amortized time.

Let ` ∈ [k] be fixed and consider an active path r ∈ R`(X, tq). If
∑

i∈[`][ri ∈ X] ≥ tq(l + 1) −
(cl−1)1 then every one of its children will be active. So we need to find {x ∈ U |h`(p ◦ x) < ∆`} =
h−1
` ([∆`]). Now h`(p ◦ x) = h′`(p) + ax mod q where a 6= 0 mod q and s = h′`(p) can be computed

in O(k) time. We then get that h−1
` ([∆`]) =

{
a−1(i− s)

∣∣ i ∈ [∆`]
}

, this we can find in time
proportional with the number of active children, so charging the cost to them gives the result.
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If
∑

i∈[`][ri ∈ X] < tq(l + 1) − (cl−1)1 then only the children r ◦ x ∈ Rl+1 where x ∈ X will

be active. So we need to find {x ∈ X |h`(p ◦ x) < ∆`}. Again using that h`(p ◦ x) = h′`(p) + ax
mod q where a 6= 0 mod q and s = h′`(p) can be computed in O(k) time, we have reduced the
problem to finding h−1

` ([∆`]) = {x ∈ X | s+ ax mod q < ∆`}. This we note we can rewrite as
h−1
` ([∆`]) = {x ∈ X | s ≤ ax ∨ ax < ∆ + s− q}, so using our sorted list this can be done in O(log n)

time plus time proportional with the number of active children, so charging this cost to them gives
the result.

We bound the expected number of active paths on a level ` ∈ [k]. Let r ∈ R` be a representative
string and define the random variables X (i) = [ri ∈ X] for i ∈ [k], by definition of Algorithm 1
(X (i))i∈[k] are independent. We then bound

Pr

∑
i∈[l]

X (i) ≥ tq`− (c`)1

 ≤ Pr

∀j ≤ ` :
∑
i∈[j]

X (i) ≥ tqj − (cj)1


≤ Pr

∑
i∈[`]

X (i) ≥ tq`− (c`)1


≤ exp(−l d(tq − c`/l ‖wq))

≤ exp(−l d(tq ‖wq))
(
tq(1−wq)
wq(1−tq)

)(c`)1
.

The crucial step here was using the identity

d(tq − ε ‖wq) = d(tq ‖wq)− ε log
tq(1−wq)
wq(1−tq) + d(tq − ε ‖ tq)

from which we can ignore the d(tq − ε ‖ tq) term, since it is positive.
Using linearity of expectation we get that

E [|R`(X, tq)|] ≤ |R`| exp(−`d(tq ‖wq))
(
tq(1−wq)
wq(1−tq)

)(c`)1

≤ 2∆` exp(−`d(tq ‖wq))
(
tq(1−wq)
wq(1−tq)

)(c`)1
.

Now the expected cost of the tree becomes

E

∑
`∈[k]

O((k + log(n)) |R`(X, tq)|)

 = O((k + log(n))
∑
`∈[k]

E [|R`(X, tq)|])

≤ O(k(k + log(n))∆k exp(−k d(tq ‖wq))
(
tq(1−wq)
wq(1−tq)

)(c`)1
) .

Note that we throw away some leverage here by bounding the size of each level by the final

level. We might have defined c` such that `∆ − `d(tq ‖wq) + c` log
tq(1−wq)
wq(1−tq) − `d(tq − c`/` ‖ tq) =

k∆ − k d(tq ‖wq) and still used the same bound. The only later requirement we set the c` is that∑
`∈[k] exp(−`d(tq − c`/` ‖ tq)) sum to 1/poly(k).

Making this change could potentially kill the
(
tq(1−wq)
wq(1−tq)

)(c`)1
factor, which is a bit of an eye

sore. However in the near-constant query time case, which is really when this factor (or term
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once we using the tensoring trick) is relevant, this trick wouldn’t work, since we then have exactly
∆ = d(tq ‖wq).

For the final proof we need the following lemma, which bounds the probability that an unbiased
Bernoulli 2d random walk stays entirely in the negative quadrant. A lemma like this is an exercise
to show using the Central Limit Theorem and convergence to Brownian motion. However, our
bound is non-asymptotic, making no assumptions about the relationship between the probability
distribution of Xi and the size of n. There are non-asymptotic CLT bounds, like Berry Esseen, but
unfortunately multivariate Berry Esseen bounds for random walks are not very developed.

Lemma 2.2 (The probability that a random walk stays in a quadrant). Let X1, . . . , Xk ∈ {0, 1}2

be iid. Bernoulli 2d-random variables with probability matrix
[

p p1−p
p2−p 1−p1−p2+p

]
. Assume that the

coordinates are correlated, that is p ≥ p1p2, and assume pqk and p2k are integers.
Let S` =

∑
i∈[`]Xi be the associated random walk. Then

Pr[∀` ∈ [k] : S` ≤ 0] ≥ 1

400 k6.5
.

The proof of this is in Section 2.3.

Proof of (4). We will prove this bound using the second moment method. For this to work, it is
critical that we restrict our representative strings further and consider

S =

r ∈ Rk
∣∣∣∣∣∣ ∀` ≤ k :

[
[ri∈X]
[ri∈Y ]

]
`− c` ≤

∑
i∈[`]

[
[ri∈X]
[ri∈Y ]

]
≤ [ tqtu ]`

 ,

It is easy to check that S ⊆ Rk(X, tq) ∩Rk(Y, tu), thus we have that

Pr [|Rk(X, tq) ∩Rk(Y, tu)| ≥ 1] ≥ Pr [|S| ≥ 1] ≥ E [|S|]2
/

E
[
|S|2

]
,

where the last bound is Paley-Zygmund’s inequality. We then need to do two things: 1) Lower

bound E [|S|], and 2) Upper bound E
[
|S|2

]
.

Lower bounding E [|S|]. Let r ∈ Rk be a representative string and define the random variables

X (i) =
[

[ri∈X]
[ri∈Y ]

]
for i ∈ [k]. Each one has distribution P =

[
w1 wq−w1

wu−wq 1−wq−wu+w1

]
. We then

introduce variables X̃ (i) with law T =
[

t1 tq−t1
tu−tq 1−tq−tu+t1

]
, where t1 minimizes D(T ‖P ) as defined

in the algorithm.
We then use the following variation on Sanov’s theorem:

Lemma 2.3. For any set A ⊆ R2×n we have

Pr
[
(X (i))i∈[k] ∈ A

]
= exp(−kD(T ‖P )) Pr

[
(X̃ (i))i∈[k] ∈ A

]
Proof. Define the logarithmic moment generating function Λ(λ) = log E [exp(〈λ,X〉)], and let z =
(∇xΛ∗)(t). By a standard correspondence, (see e.g. [59] Chapter 14 or [32] Chapter 6.2), we have
that

dT (x) = exp(〈z, x〉 − Λ(z))dP (x)
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for Radon–Nikodym derivates dT and dP . Now using the exponential change of measure, we get
that

Pr
[
(X (i))i∈[k] ∈ A

]
=

∫
(x(i))i∈[k]∈A

dP⊗k

=

∫
(x̃(i))i∈[k]∈A

exp

kΛ(z)−

〈
z,
∑
i∈[k]

x̃(i)

〉 dT⊗k

= exp(−kD(T ‖P ))

∫
(x̃(i))i∈[k]∈A

exp

−〈z,∑
i∈[k]

(
x̃(i) − [ tqtu ]

)〉 dT⊗k

= exp(−kD(T ‖P )) Pr
[
(X̃ (i))i∈[k] ∈ A

]
,

where the last inequality follows from the fact that if (x̃(i))i∈[k] ∈ A then
∑

i∈[k] x̃
(i) = [ tqtu ]k.

For convenience we will sometimes write T =
[
t11 t12
t21 t22

]
. Note that by assumption tqk = (t12 +

t11)k and tuk = (t21 + t11)k are integers, but values such as t11k and t22k need not be. This will
We define the sets

U =

(x(i))i∈[k] ∈ R2×k

∣∣∣∣∣∣∀` ≤ k :
∑
i∈[`]

x(i) ≤ [ tqtu ]`


and L =

(x(i))i∈[k] ∈ R2×k

∣∣∣∣∣∣∀` ≤ k :
∑
i∈[`]

x(i) ≥ [ tqtu ]`− c`


such that U ∩ L are all sequences satisfying our path requirement. In other words E|S| =

exp(−kD(T ‖P )) Pr
[
(X̃ (i))i∈[k] ∈ U ∩ L

]
. Using a union bound we split up:

Pr
[
(X̃ (i))i∈[k] ∈ U ∩ L

]
≥ Pr

[
(X̃ (i))i∈[k] ∈ U

]
− Pr

[
(X̃ (i))i∈[k] ∈ L

]
.

The term is bounded by Lemma 2.2 from the Appendix. Once we notice that w1 ≥ wqwu
implies that t1 ≥ tqtu. One way to see this is that t1 minimizing D(T ‖P ) gives rise to the equation
w1(1−wq−wu+w1)
(wq−w1)(wu−w1) =

t1(1−tq−tu+t1)
(tq−t1)(tu−t1) =

t1+t1(t1−tq−tu)
tqtu+t1(t1−tq−tu) . If w1 ≥ wqwu the left hand side is ≥ 1, and so

we must have t1 ≥ tqtu.
Lemma 2.2 then gives us

Pr
[
(X̃ (i))i∈[k] ∈ U

]
≥ 1

400
k−3.5 .

This is a pretty small value, so for the union bound to work we need an even smaller probability
for the lower bound.

We bound each coordinate individually. The cases are symmetric, so we only consider the first
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coordinate. Using another union bound and Bernstein’s inequality we get

Pr

[
∃` ≤ k :

∑̀
i=1

X̃ (i)
1 ≤ tq`− (c`)1

]
=
∑
l≤k

Pr

[∑̀
i=1

X̃ (i)
1 ≤ tq`− (c`)1

]

≤
∑
l≤k

exp

(
−(c`)

2
1/2

(1− tq)tq`+ (1− 2tq)(c`)1/3

)
≤ 1

1200
k−6.5.

since (c`)1 = Ω(
√
tq(1− tq)l log l + |1− 2tq| log l).

Similarly, we upper bound Pr
[
∃` ≤ k :

∑`
i=1 X̃

(i)
2 ≤ tu`− (c`)2

]
≤ 1

1200k
−6.5. Putting it all

together we get

Pr
[
(X (i))i∈[k] ∈ A

]
≥ 1

1200
exp(−kD(T1 ‖P1))k−6.5 ,

so by linearity of expectation we get that

E [S] ≥ |Rk|
1

1200
k−6.5 exp(−kD(T ‖P )) ≥ 1

1200
k−6.5∆k exp(−kD(T ‖P )) .

Upper bounding E
[
|S|2

]
Consider two representative strings r, r′ ∈ Rk and let q ∈ R` be their common prefix, hence l is the

length of their common prefix. Define the random variables X (i) =
[

[ri∈X]
[ri∈Y ]

]
, Y(j) =

[
[r′j∈X]

[r′j∈Y ]

]
, and

Z(h) =
[

[qh∈X]
[qh∈Y ]

]
for i, j ∈ [k] \ [`] and h ∈ [l]. We then get that

Pr
[
p, p′ ∈ S

]
≤ Pr

∑
h∈[`]

Z(h) +
∑

i∈[k]\[l]

X (i) ≥ tk ∧
∑
h∈[`]

Z(h) +
∑

j∈[k]\[l]

Y(j) ≥ tk ∧
∑
h∈[`]

Z(h) ≤ tl


≤ Pr

∑
h∈[`]

Z(h) +
∑

i∈[k]\[l]

X (i) +
∑

j∈[k]\[l]

Y(j) ≥ (2k − `)t

 .

Now
∑

h∈[`]Z(h) +
∑

i∈[k]\[l]X (i) +
∑

j∈[k]\[l] Y(j) is almost a sum of independent random variable.

We have that X (k−`+1) and Y(k−`+1) are correlated since they are chosen by sampling without
replacement, but this implies that

E
[
exp(〈λ,X (k−`+1) + Y(k−`+1)〉)

]
≤ E

[
exp(〈λ,X (k−`+1)〉)

]
E
[
exp(〈λ,Y(k−`+1)〉)

]
We can then use a 2-dimensional Entropy-Chernoff bound and get that

Pr

∑
h∈[`]

Z(h) +
∑

i∈[k]\[l]

X (i) +
∑

j∈[k]\[l]

Y(j) ≥ (2k − `)t

 ≤ exp(−(2k − `) D(T ‖P )) ,
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Using this we can upper bound E
[
|S|2

]
= E

[∑
r,r′∈Rk [r, r′ ∈ S]

]
by splitting the sum by the

length of their common prefix.

E
[
|S|2

]
= E

 ∑
r,r′∈Sk

[r, r′ ∈ S]


≤

k∑
i=1

 i∏
j=1

∆j

(∆i+1

2

) k∏
j=i+2

∆j

 exp(−(2k − i) D(T ‖P ))

≤

 k∏
j=1

∆j

2

exp(−2kD(T ‖P ))

k∑
i=1

exp(iD(T ‖P ))

 i∏
j=1

∆j

−1

≤

 k∏
j=1

∆j

2

· exp(−2kD(T ‖P )) · k · exp(kD(T ‖P )) ·∆−k

≤ 4k∆k exp(−kD(T ‖P ))

Finishing the proof

Having lower bounded E [|S|] and upper bounded E
[
|S|2

]
we can finish the proof.

Pr [|Rk(X, tq) ∩Rk(Y, tu)| ≥ 1] ≥ Pr [|S| ≥ 1]

≥ E [|S|]2

E
[
|S|2

]
≥

1
12002

k−13∆2k exp(−2kD(T ‖P ))

4k∆k exp(−kD(T ‖P ))

=
1

24002
k−14∆` exp(−kD(T ‖P )) .

2.3 Central Random Walks

The main goal of this section is to prove Lemma 2.2, which polynomially in k lower bounds the
probability that a biased random walk on Z2 always stays below its means. Asymptotically, this
can be done in various ways using the Central Limit Theorem for Brownian Motion, but as far as
we know there are no standard ways to prove such a result in a quantitative way.

What we would really want is a Multidimensional Berry Esseen for Random Walks. Instead we
prove something specifically for walks where each iid. step X1, . . . , Xk ∈ {0, 1}2 be is a Bernoulli

2d-random variables with probability matrix
[

p p1−p
p2−p 1−p1−p2+p

]
. We need the further restrictions

that the coordinates are correlated (p ≥ p1p2), and that p1k and p2k are integers.
We will start by proving some partial results, simply bounding the probability that the final

position of the random walk hits a specific value. We then prove the lemma conditioned on hitting
those values, and finally put it all together.
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Lemma 2.4. Let k ∈ Z+ and p1, p2 ∈ [0, 1], such that, both p1k and p2k are integers. Choose
p ∈ [0, 1], such that, p ≥ p1p2. Let X(i) ∈ R2 be independent identically distributed 2-dimensional

Bernoulli variables, where their probability matrix is P =
[

p p1−p
p2−p 1−p1−p2+p

]
. We then get that

Pr

∑
i∈[k]

X(i) = ( p1p2 ) k ∧
∑
i∈[k]

X
(i)
1 X

(i)
2 = dpke

 ≥ 1

400
k−3.5 .

In the proof we will be using the Stirling’s approximation

√
2πnnne−n ≤ n! ≤ e

√
nnne−n .

This implies the following useful bounds on the binomial and multinomial coefficients.(
n

an

)
≥
√

2π

e2
·

√
n√

an(1− a)n

nn

(an)an((1− a)n)(1−a)n
(7)

≥
√

2π

e2
n−0.5a−an(1− a)−(1−a)n .(

n

an, bn, cn

)
≥
√

2π

e4
·

√
n√

anbncn(1− a− b− c)n
nn

(an)an(bn)bn(cn)cn((1− a− b− c)n)(1−a−b−c)n(8)

≥
√

2π

e4
n−1.5a−anb−bnc−cn(1− a− b− c)−(1−a−b−c)n .

Proof. If p1 = 1 then p = p2 and we get that

Pr

∑
i∈[k]

X
(i)
2 = p2k

 =

(
k

p2k

)
pp2k2 (1− p2)(1−p2)k ≥

√
2π

e2
k−

1
2 ,

where we have used eq. (7). We get the same bound when p1 = 0, p2 = 1, or p2 = 0.
Now assume that p1, p2 6∈ {0, 1}, we then have that 1

k ≤ p1 ≤ 1 − 1
k and 1

k ≤ p2 ≤ 1 − 1
k . We

first note that

Pr

∑
i∈[k]

X(i) = (p1k, p2k) ∧
∑
i∈[k]

X
(i)
1 X

(i)
2 = dpke


=

(
k

dpke, p1k − dpke, p2k − dpke

)
pdpke(p1 − p)p1k−dpke(p2 − p)p2k−dpke(1− p1 − p2 + p)k−p1k−p2k+dpke

≥
√

2π

e4
· 1

k3/2
exp

(
− dpke log

dpke
pk
− (p1k − dpke) log

p1k − dpke
p1k − pk

− (p2k − dpke) log
p2k − dpke
p2k − pk

− (k − p1k − p2k + dpke) log
k − p1k − p2k + dpke
k − p1k − p2k + pk

)
where we have used eq. (8). We will bound each of the terms dpke log dpkepk , (p1k−dpke) log p1k−dpke

p1k−pk ,

(p2k − dpke) log p2k−dpke
p2k−pk , and (k − p1k − p1k + dpke) log k−p1k−p2k+dpke

k−p1k−p2k+pk individually.

Using that p ≥ p1p2 ≥ 1
k2

we get that

dpke log
dpke
pk

= (1 + pk) log

(
1 +

1

pk

)
≤ 1 + log(1 + k) .
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Now using that 1− p1 − p2 + p ≥ (1− p1)(1− p2) ≥ 1
k2

we get that

(k − p1k − p1k + dpke) log
k − p1k − p2k + dpke
k − p1k − p2k + pk

≤ (k(1− p1 − p2 + p) + 1) log

(
1 +

1

k(1− p1 − p2 + p)

)
≤ 1 + log(1 + k) .

We easily get that

(p1k − dpke) log
p1k − dpke
p1k − pk

≤ (p1k − dpke) log
p1k − pk
p1k − pk

= 0 .

Similarly, we get that (p2k − dpke) log p2k−dpke
p2k−pk = 0.

Combining all this we get that

Pr

∑
i∈[k]

X(i) = (p1k, p2k) ∧
∑
i∈[k]

X
(i)
1 X

(i)
2 = dpke

 ≥ √2π

e4
k−1.5 exp(−(1 + log(1 + k))− (1 + log(1 + k)))

≥ 1

400
k−3.5 .

We now prove a result for the random walk, conditioned on the final position. In the last result
of this section, we will remove those restrictions.

Lemma 2.5. Let k ∈ Z+ and p, p1, p2 ∈ [0, 1], such that, pk, p1k, and p2k are integers and p ≥ p1p2.
Let X(i) ∈ {0, 1}2 be independent identically distributed variables. We then get that

Pr

∀l ≤ k :
∑
i∈[k]

X(i) ≥

p1

p2

 l

∣∣∣∣∣∣
∑
i∈[k]

X(i) =

p1

p2

 k ∧
∑
i∈[k]

X
(i)
1 X

(i)
2 = pk

 ≥ k−3 .

In the proof we will use the folklore result.

Lemma 2.6. Let k ∈ Z+ and (ai)i∈[k] numbers such that
∑

i∈[k] ai ≥ 0 then there exists a s ∈ [k]
such that

∑
i∈[l] a(s+i) mod k ≥ 0 for every l ≤ k.

Proof of Lemma 2.5. Using Lemma 2.6 we get that
∑

i∈[l]X
(i)
1 ≥ p1l for every l ≤ k with probability

at least k−1 since every variable identically distributed. Fixing (X
(i)
1 )i∈[k] and using Lemma 2.6 2

times we get that
∑

i∈[l]X
(i)
1 X

(i)
2 ≥ p

p1

∑
i∈[l]X

(i)
1 and

∑
i∈[l](1 − X

(i)
1 )X(i) ≥ p2−p

1−p1
∑

i∈[l]X
(i)
1 for

every l ≤ k with probability at least k−2. If all these three events happens then for every l ≤ k we
get that ∑

i∈[l]

X
(i)
2 =

∑
i∈[l]

X
(i)
1 X

(i)
2 +

∑
i∈[l]

(1−X(i)
1 )X

(i)
2

≥ p

p1

∑
i∈[l]

X
(i)
1 +

p2 − p
1− p1

∑
i∈[l]

X
(i)
1

=
p− p1p2

p1(1− p1)

∑
i∈[l]

X
(i)
1 +

p2 − p
1− p1

l

≥ p− p1p2

p1(1− p1)
p1l +

p2 − p
1− p1

l

= p2l .
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So we conclude that with probability at least k−3 then
∑

i∈[l]X
(i) ≥

p1

p2

 l for every l ≤ k which

finishes the proof.

All that remains is proving Lemma 2.2. We restate it and then prove it.

Lemma 2.2. Let X1, . . . , Xk ∈ {0, 1}2 be iid. Bernoulli 2d-random variables with probability matrix[
p p1−p

p2−p 1−p1−p2+p

]
. Assume that the coordinates are correlated, that is p ≥ p1p2, and assume pqk

and p2k are integers.
Let S` =

∑
i∈[`]Xi be the associated random walk. Then

Pr[∀` ∈ [k] : S` ≤ 0] ≥ 1

400 k6.5
.

Proof. We define the set U =
{

(x(i))i∈[k] ∈ R2×k
∣∣∣∀` ≤ k :

∑
i∈[`] x

(i) ≤ [ p1p2 ]`
}

of all sequences sat-

isfying our path requirement. In other words Pr[∀k ∈ [n] : Sk ≤ 0] = Pr
[
(X (i))i∈[k] ∈ U

]
. We then

add even more restrictions by defining

A′ =

(x(i))i∈[k] ∈ R2×k

∣∣∣∣∣∣
∑
i∈[k]

x(i) = [ p1p2 ]k ∧
∑
i∈[k]

(1− x(i)
1 )(1− x(i)

2 ) = dp22ke

 .

That is, we require the last final value of the path to completely match its expectation, rounded

up. By monotonicity we have Pr
[
(X (i))i∈[k] ∈ U

]
≥ Pr

[
(X̃ (i))i∈[k] ∈ U ∩A′

]
.

We want to use Lemma 2.4 and Lemma 2.5 and to ease the notation we introduce the negated
random variables Y(i) = 1−X̃ (i). Define p22 = 1−p1−p2 +p. We then have that E

[
Y(i)

]
= [ 1−p1

1−p2 ]

and Pr
[
Y(i) = ( 1

1 )
]

= p22 = 1− p1 − p2 + p ≥ (1− p1)(1− p2) by the assumption of correlation.

We can then rewrite using Y(i):

Pr
[
(X̃ (i))i∈[k] ∈ U ∩A′

]
= Pr

∀` ≤ k :
∑
i∈[k]

Y(i) ≥ [ 1−p1
1−p2 ]` ∧

∑
i∈[k]

Y(i) = [ 1−p1
1−p2 ]k ∧

∑
i∈[k]

Y(i)
1 Y

(i)
2 = dp22ke


Now using Lemma 2.4 we have that

Pr

∑
i∈[k]

Y(i) = [ 1−p1
1−p2 ]k ∧

∑
i∈[k]

Y(i)
1 Y

(i)
2 = dp22ke

 ≥ 1

400
k−3.5 .

Combining this with Lemma 2.5 we get that

Pr

∀` ≤ k :
∑
i∈[k]

Y(i) ≥ [ 1−p1
1−p2 ]` ∧

∑
i∈[k]

Y(i) = [ 1−p1
1−p2 ]k ∧

∑
i∈[k]

Y(i)
1 Y

(i)
2 = dp22ke


= Pr

∑
i∈[k]

Y(i) = [ 1−p1
1−p2 ]k ∧

∑
i∈[k]

Y(i)
1 Y

(i)
2 = dp22ke


· Pr

∀` ≤ k :
∑
i∈[k]

Y(i) ≥ [ 1−p1
1−p2 ]`

∣∣∣∣∣∣
∑
i∈[k]

Y(i) = [ 1−p1
1−p2 ]k ∧

∑
i∈[k]

Y(i)
1 Y

(i)
2 = dp22ke


≥ 1

400
k−6.5 .
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3 Lower Bounds

Our lower bounds all assume that w2d = ω(log n), where d is the size of the universe. As discussed
in the introduction is both standard and necessary.

We proceed to define the hard distributions for all further lower bounds.

1. A query x ∈ {0, 1}d is created by sampling d random independent bits with Bernoulli(wq)
distribution.

2. A dataset P ⊆ {0, 1}d is constructed by sampling n − 1 vectors with random independent
bits from such that yi ∼ Bernoulli(w2/wq) if xi = 1 and yi ∼ Bernoulli((wu − w2)/(1− wq))
otherwise, for all y ∈ P .

3. A ‘close point’, y′ ∈ {0, 1}d, is created by y′i ∼ Bernoulli(w1/wq) if xi = 1 and y′i ∼
Bernoulli((wu − w1)/(1− wq)) otherwise. This point is also added to P .

The values are chosen such that E [|x|] = wqd, E [|z|] = wud for all z ∈ P , E [|x ∩ y′|] = w1d, and
E [|x ∩ y|] = w2d for all y ∈ P \{y′}. By a union bound over P , the actual values are within factors
1+o(1) of their expectations with high probability. Changing at most o(log n) coordinates we ensure
the weights of queries/database points is exactly their expected value, while only changing the inner
products by factors 1+o(1). Since the changes do not contain any new information, we can assume
for lower bounds that entries are independent. Thus any (wq, wu, w1(1−o(1)), w2(1+o(1)))-GapSS
data structure on P must thus be able to return y′ with at least constant probability when given
the query x.

Model Our lower bounds are shown in slightly different models. The first lower bound follows
the framework of O’Donnell et al. [54] and Christiani [27] and directly lower bound the quantity
log(p1/min{pu,pq})
log(p2/min{pu,pq}) which lower bounds ρu and ρq in Definition 4. This lower bound holds for all

w2 6= wqwu, i.e., it gives a lower bound when we are not considering a random instance, and it only
gives a lower bound in the case where ρq = ρu.

For the second lower bound we follow the framework of Andoni et al. [10] and give a lower bound
in the “list-of-points”-model (see Definition 2). This is a slightly more general model, though it is
believed that all bounds for the first model can be shown in the list-of-points model as well. Our
lower bound shows that our upper bound is tight in the full time/space trade-off when w2 = wqwu,
i.e., when we are given a random instance.

The second bound can be extended to show cell probe lower bounds by the arguments in [57].

3.1 p-biased Analysis

We first give some preliminaries on b-biased Boolean analysis, and then introduce the directed noise
operator.

3.1.1 Preliminaries

We want analyse Boolean functions f : {0, 1}d → {0, 1} but as is common, it turns out to be
beneficial to consider a more general class of functions f : {0, 1}d → R.
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The probability distribution πp is defined on {0, 1} by πp(1) = p and πp(0) = 1 − p, and we

define π⊗dp to be the product probability distribution on {0, 1}d. We write L2({0, 1}d , π⊗dp ) for the

inner product space of functions f : {0, 1}d → R with inner product

〈f, g〉p = E
x∼π⊗dp

[f(x)g(x)] .

We will define the norm ‖f‖Lq(p) =
(

Ex∼π⊗dp [f(x)q]
)1/q

.

We define the p-biased Fourier coefficients for a function f : L2({0, 1}d , π⊗dp ) by

f̂ (p)(S) = E
x∼π⊗dp

[
f(x)φ

(p)
S (x)

]
,

for every S ⊆ [d] and where we define

φ(p)(x) =
x− p√
p(1− p)

φ
(p)
S (x) =

∏
i∈S

φ(p)(xi) .

The Fourier coefficients have the nice property that

f(x) =
∑
S⊆[d]

f̂ (p)(S)φ
(p)
S (x) .

The Fourier coefficients satisfy the Parseval-Plancherel identity, which says that for any f, g ∈
L2({0, 1}d , πdp) we have that

〈f, g〉p =
∑
S⊆[d]

f̂ (p)(S)ĝ(p)(S) .

In particular we have that Ex∼π⊗dp

[
f(x)2

]
= ‖f‖2L2(p) =

∑
S⊆[d] f̂

(p)(S)2. For Boolean functions

f : {0, 1}d → {0, 1} this is particularly useful since we get that

Pr
x∼π⊗dp

[f(x) = 1] = E
x∼π⊗dp

[f(x)] = E
x∼π⊗dp

∑
S⊆[n]

f̂ (p)(S)φ
(p)
S (x)

 = f̂ (p)(∅)

Pr
x∼π⊗dp

[f(x) = 1] = E
x∼π⊗dp

[f(x)] = E
x∼π⊗dp

[
f(x)2

]
=
∑
S⊆[d]

f̂ (p)(S)2.

If we think of f as a filter in a Locality Sensitive data structure, Prx∼π⊗dp [f(x) = 1] is the

probability that the filter accepts a random point with expected weight p (d · p of the coordinates
being 1).

3.1.2 Noise

For ρ ∈ [−1, 1], p1, p2 ∈ (0, 1), and x ∈ {0, 1}d we write y ∼ Np1→p2
ρ (x) when y ∈ {0, 1}d is randomly

chosen such that for each i ∈ [d] independently, we have that if xi ∼ πp2 then yi ∼ πp1 and (xi, yi)
are ρ-correlated. We note that if x ∼ π⊗dp2 and y ∼ Np1→p2

ρ then we also have that y ∼ π⊗dp1 and
x ∼ Np2→p1

ρ (y).
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For ρ ∈ [−1, 1] and p1, p2 ∈ (0, 1) we define the directed noise operator T p1→p2ρ : L2({0, 1}d , π⊗dp1 )→
L2({0, 1}d , π⊗dp2 ) by

T p1→p2ρ f(x) = E
y∼Np1→p2

ρ

[f(y)] .

When p1 = p2 = p then T p→pρ is the usual noise operator on p-biased spaces and we denote it

T
(p)
ρ . T

(p)
ρ has the nice property that T̂

(p)
ρ f

(p)

(S) = ρ|S|f̂ (p)(S) for any S ⊆ [d], and hence T
(p)
ρ

satisfies the semigroup property T
(p)
ρ T

(p)
σ = T

(p)
ρσ . The following lemma shows that we have similar

properties for T p1→p2ρ .

Lemma 3.1. For ρ ∈ [−1, 1], p1, p2 ∈ (0, 1) and f ∈ L2({0, 1}d , π⊗p1) we have that

̂T p1→p2ρ f
(p2)

(S) = ρ|S|f̂ (p1)(S) ,

for any S ⊆ [d]. Furthermore, for any σ ∈ [−1, 1] and p3 ∈ [0, 1] we have that T p2→p3σ T p1→p2ρ =
T p1→p3ρσ and T p2→p1ρ is the adjoint of T p1→p2ρ .

Proof. We fix S ⊆ [d] and get that

̂T p1→p2ρ f
(p2)

(S) = E
x∼π⊗dp2

[
T p1→p2ρ f(x)φ

(p2)
S (x)

]
= E

x∼π⊗dp2

[
E

y∼Np1→p2
ρ (x)

[f(y)]φ
(p2))
S (x)

]

= E
x∼π⊗dp2

 E
y∼Np1→p2

ρ (x)

∑
T⊆[d]

f̂ (p1)(T )φ
(p1)
T (y)

φ(p2)
S (x)


= E

x∼π⊗dp2

[
E

y∼Np1→p2
ρ (x)

[
f̂ (p1)(S)φ

(p1)
S (y)φ

(p2)
S (x)

]]

= f̂ (p1)(S)
∏
i∈S

E
xi∼πp2

[
E

yi∼N
p1→p2
ρ

[
φ

(p1)
i (yi)φ

(p2)
i (xi)

]]
= ρ|S|f̂ (p1)(S) ,

where the last line uses that φ
(p)
i (x) = x−p√

p(1−p)
, which proves the first claim. For the second claim

we note that

̂(T p2→p3σ T p1→p2ρ f)
(p3)

(S) = σ|S| ̂T p1→p2ρ f
(p2)

(S) = (ρσ)|S|f̂ (p1)(S) = ̂T p1→p2ρσ f
(p3)

(S) ,

for any f ∈ f ∈ L2({0, 1}d , π⊗p1) and any S ⊆ [d] which proves the second claim. For the last claim
we use the Plancherel-Parseval identity and get that

〈T p1→p2ρ f, g〉L2(p2) =
∑
S∈[d]

ρ|S|f̂ (p1)ĝ(p2) = 〈f, T p2→p1ρ g〉L2(p1) ,

for any f ∈ L2({0, 1}d , π⊗dp1 ) and any g ∈ L2({0, 1}d , π⊗dp2 ) which shows that T p2→p1ρ is the adjoint
of T p1→p2ρ .
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We say that (T p1→p2ρ )ρ>0 is (s, r)-hypercontractive if there exists ρ0 > 0 such that for every

ρ ≥ ρ0 and every f ∈ Lr({0, 1}d , πdp1)∥∥T p1→p2ρ f
∥∥
Ls(p2)

≤ ‖f‖Lr(p1) .

We define σs,r(p1, p2) to be the smallest possible ρ0 We are interested in the hypercontractivity of
T p1→p2

3.2 Symmetric Lower bound

The most general, but sadly least tractable, approach to our lower bounds, is to bound the noise
operator Tα in terms of a different level of noise, Tβ. We do however manage to show one bound
on this type, following an spectral approach first used by O’Donnell et al. [54] to prove the first
optimal LSH lower bounds of ρ ≥ 1/c for data-independent hashing. Besides handling the case of
set similarity with filters rather than hash functions, we slightly generalize the approach a big by
using the power-means inequality rather than log-concavity. 16

We will show the following inequality(
Prx,y′,f [f(x) = 1, f(y′) = 1]

Prx,f [f(x) = 1]

)1/ logα

≤
(

log
Prx,y,f [f(x) = 1, f(y) = 1]

Prx,f [f(x) = 1]

)1/ log β

where α = w1−w2

w(1−w) and β = w2−w2

w(1−w) , and y′ and y are sampled as respectively a close and a far

point (see the top of the section). By rearrangement, this directly implies a lower bound in the
LSF model as defined in Definition 4.

First we prove a general lemma about Boolean functions, which contains the most important
arguments.

Lemma 3.2. Let f : {0, 1}n → R be a function and p ∈ (0, 1). Then for any 1 > α ≥ β > 0 we
have that (

〈T (p)
α f, f〉L2(p)

‖f‖2L2(p)

)1/ log(1/α)

≤

〈T (p)
β f, f〉L2(p)

‖f‖2L2(p)

1/ log(1/β)

.

16This widens the range in which the bound is applicable – the O’Donnell bound is only asymptotic for r → 0.
However the values we obtain outside this range, when applied to Hamming space LSH, aren’t sharp against the
upper bounds.
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Proof. We use the Parseval-Plancherel identity and the power-mean inequality to get that(
〈T (p)
α f, f〉L2(p)

‖f‖2L2(p)

)1/ log(1/α)

=

(∑
S⊆[n] α

|S|f̂ (p)(S)2∑
S⊆[n] f̂

(p)(S)2

)1/ log(1/α)

=

 n∑
k=0

∑
S⊆[n]
|S|=k

f̂ (p)(S)2

∑
S⊆[n] f̂

(p)(S)2

(
e−k
)log(1/α)


1/ log(1/α)

≤

 n∑
k=0

∑
S⊆[n]
|S|=k

f̂ (p)(S)2

∑
S⊆[n] f̂

(p)(S)2

(
e−k
)log(1/β)


1/ log(1/β)

=

(∑
S⊆[n] β

|S|f̂ (p)(S)2∑
S⊆[n] f̂

(p)(S)2

)1/ log(1/β)

=

〈T (p)
β f, f〉L2(p)

‖f‖2L2(p)

1/ log(1/β)

.

The first and the last equality follows from the Parseval-Plancherel identity and the inequality
follows from the power-mean inequality since log(1/α) ≤ log(1/β).

The proof of Theorem 2 is then simply a few a rearrangements such that we can use Lemma 3.2.

Corollary 1. Any data-independent LSF data structure for the (w,w,w1, w2)-GapSS problem with
expected query time nρq and expected space usage n1+ρu where ρq = ρu = ρ must have

ρ ≥ log

(
w1 − w2

w(1− w)

)/
log

(
w2 − w2

w(1− w)

)
.

Proof. Let F be any fixed LSF-family and let f : {0, 1}n → {0, 1} be a random function such
that f−1(1) = Q for Q ∼ F . Now we define the deterministic function f : {0, 1}n → R by

f(x) =
∑

S⊆[d]

√
Ef

[
f̂ (w)(S)2

]
φS(x). Using the Parseval-Plancherel identity we get that

E
f

[
〈T (w)
ρ f, f〉L2(w)

]
=
∑
S⊆[d]

ρ|S| E
f

[
f̂ (w)(S)2

]
= 〈T (w)

ρ f, f〉L2(w) .

for every ρ. We set α = w1−w2

w(1−w) and β = w2−w2

w(1−w) and note that Prx,y′,f [f(x) = 1, f(y′) = 1] =

Ef

[
〈T (w)
α f, f〉L2(w)

]
, Prx,y,f [f(x) = 1, f(y) = 1] = Ef

[
〈T (w)
β f, f〉L2(w)

]
, and Prx,f [f(x) = 1] =

40



Ef

[
‖f‖2L2(w)

]
. Then using Lemma 3.2 we get that

(
Prx,y′,f [f(x) = 1, f(y′) = 1]

Prx,f [f(x) = 1]

)1/ log 1/α

=

Ef

[
〈T (w)
α f, f〉L2(w)

]
Ef

[
‖f‖2L2(w)

]
1/ log 1/α

=

〈T (w)
α f, f〉L2(w)∥∥f∥∥2

L2(w)

1/ log 1/α

≤

〈T (w)
β f, f〉L2(w)∥∥f∥∥2

L2(w)

1/ log 1/β

=

(
Prx,y,f [f(x) = 1, f(y) = 1]

Prx,f [f(x) = 1]

)1/ log 1/β

.

By rearrangement this implies that

ρ =
log

Prx,y′,f [f(x)=1,f(y′)=1]

Prx,f [f(x)=1]

log
Prx,y,f [f(x)=1,f(y)=1]

Prx,f [f(x)=1]

≥ logα

log β
.

As noted the bound is sharp against our upper bound when wu, wq, w1, w2 are all small. Also

notice that logα/ log β ≤ 1−α
1+α

1−β
1+β is a rather good approximation for α and β close to 1. Here the

right hand side is the ρ value of Spherical LSH with the batch-normalization embedding discussed
in Section 4.1.

Note that the lower bound becomes 0 when we get close to the random instance, w2 → wqwu.
In the next sections we will remedy this, by showing a lower bound tight exactly when w2 = wqwu.

3.3 General Lower Bound

Our second lower bound will be proven in the “list-of-points” model. We follow and expand upon
the approach by Andoni et al. [10]. The main idea is to lower bound random instances with planted
points. If the random instances correspond to a Similarity Search problem with high probability
then we have a lower bound for the Similarity Search problem. We formalize the notion of random
instances in the following general definition.

Definition 3 (Random instance). For spaces Q and U we describe a distribution of dataset-query
pairs (P, q) where P ⊆ U and q ∈ Q. Let PQU be a probability distribution on Q×U , a PQU -random
instance is a dataset-query pair drawn from the following distribution.

1. A dataset P ⊆ U is constructed by sampling n points where p ∼ PU for all p ∈ P .

2. A dataset point p′ ∈ P is fixed and a q ∈ Q is sampled such that (q, p′) ∼ PQU .

3. The goal of the data structure is to preprocess P such that it recovers p′ when given the query
point q.

We can then generalize the result by Andoni et al. [10], who proved a result specifically for
random Hamming instances, to general random instances. We defer the proof to Appendix A.
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Lemma 3.3. Let Q and U be some spaces and PQU a probability distribution on Q×U . Consider
any list-of-points data structure for PQU -random instances of n points, which uses expected space
n1+ρu, has expected query time nρq−on(1), and succeeds with probability at least 0.99. Let r, s ∈ [1,∞]
satisfy

E
(X,Y )∼PQU

[f(X)g(Y )] ≤ ‖f(X)‖Lr(PQ) ‖g(Y )‖Ls(PU ) ,

for all functions f : Q→ R and g : U → R. Then

1

r
ρq +

1

r′
ρu ≥

1

r
+

1

s
− 1 ,

where r′ = r
r−1 is the convex conjugate of r.

This gives a good way to lower bound random instances when one has tight hypercontractive
inequalities. Unfortunately, for most probability distributions this is not the case but we can amplify
the power of Lemma 3.3 by combining it with Lemma 1.1 which we recall from the introduction.

Lemma 1.1. Let PXY be a probability distribution on a space ΩX ×ΩY and let PX and PY be the
marginal distributions on the spaces ΩX and ΩY respectively. Let s, r ∈ [1,∞), then the following
is equivalent

1. For all functions f : ΩX → R and g : ΩY → R we have

E
(X,Y )∼PXY

[f(X)g(Y )] ≤ ‖f(X)‖Lr(PX) ‖g(Y )‖Ls(PY ) . (9)

2. For all probability distributions QXY which are absolutely continuous with respect to PXY we
have

D(QXY ‖PXY ) ≥ D(QX ‖PX)

r
+

D(QY ‖PY )

s
. (10)

We defer the proof to the end of the section and instead start by focusing on the effects of
combining Lemma 3.3 and Lemma 1.1. First of all we can prove the following general lower bound
for random instances.

Theorem 4. Let Q and U be some spaces and PQU a probability distribution on Q×U . Consider
any list-of-points data structure for PQU -random instances of n points, which uses expected space
n1+ρu, has expected query time nρq−on(1), and succeeds with probability at least 0.99. Then for every
r ∈ [1,∞] we have that

1

r
ρq +

1

r′
ρu ≥ inf

QQU

(
1

r

D(QQU ‖PQU )−D(QQ ‖PQ)

D(QU ‖PU )
+

1

r′
D(QQU ‖PQU )−D(QU ‖PU )

D(QU ‖PU )

)
,

where r′ = r
r−1 is the convex conjugate of r and the infimum is over every probability distribution

QQU with QU 6= PU and which is absolutely continuous with respect to PQU .

Proof. Let r ∈ [1,∞] and choose s = arg inf {s ∈ [1,∞] | PQU is (r, s)-hypercontractive}. Lemma 3.3
give us that

1

r
ρq +

1

r′
ρu ≥

1

r
+

1

s
− 1 . (11)
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Lemma 1.1 give us that

D(QXY ‖PXY ) ≥ D(QX ‖PX)

r
+

D(QY ‖PY )

s

for every QQU with QU 6= PU and which is absolutely continuous with respect to PQU . We can
rewrite this as

1

r
D(QQU ‖PQU )−D(QQ ‖PQ) +

1

r′
D(QQU ‖PQU )−D(QU ‖PU ) ≥

(
1

s
− 1

r′

)
D(QU ‖PU ) ⇔

1

r

D(QQU ‖PQU )−D(QQ ‖PQ)

D(QU ‖PU )
+

1

r′
D(QQU ‖PQU )−D(QU ‖PU )

D(QU ‖PU )
≥ 1

s
− 1

r′
=

1

s
+

1

r
− 1

Now the minimality of s give us that

inf
QQU

(
1

r

D(QQU ‖PQU )−D(QQ ‖PQ)

D(QU ‖PU )
+

1

r′
D(QQU ‖PQU )−D(QU ‖PU )

D(QU ‖PU )

)
=

1

s
+

1

r
− 1 , (12)

where the infimum is over every probability distributionQQU withQU 6= PU and which is absolutely
continuous with respect to PQU . Now combining (11) and (12) give us the result.

Combining the lemma with the “Hypercontractive Induction Theorem” [52] we can prove The-
orem 3.

Lemma 3.4. Let PXY be a probability distribution on a space ΩX ×ΩY and P⊗nXY be a probability
distribution consisting n independent copies of PXY . Then PXY is (r, s)-hypercontractive if and
only if P⊗nXY is (r, s)-hypercontractive.

We restate Theorem 3 and prove it.

Theorem 3. Consider any list-of-point data structure for the (wq, wu, w1, wqwu)-GapSS problem
over a universe of size d of n points with wqwud = ω(log n), which uses expected space n1+ρu, has
expected query time nρq−on(1), and succeeds with probability at least 0.99. Then for every α ∈ [0, 1]
we have that

αρq + (1− α)ρu ≥ inf
tq ,tu∈[0,1]
tu 6=wu

(
α

D(T ‖P )− d(tq ‖wq)
d(tu ‖wu)

+ (1− α)
D(T ‖P )− d(tu ‖wu)

d(tu ‖wu)

)
,

where P =
[

w1 wq−w1

wu−w1 1−wq−wu+w1

]
and T = arg inf

T�P, E
X∼T

[X]=[
tq
tu

]

D(T ‖P ).

Proof. From the discussion at the beginning of the section it is enough to lower bound the P⊗d-
random instance where P = Bernoulli([

w1 wq−w1

wu 1−wq−wu+w1
]), since this will imply a lower bound for the

(wq, wu, w1, wqwu)-GapSS problem. Combining Lemma 3.4 and Lemma 1.1 we get that P⊗d is (r, s)-

hypercontractive if and only if D(T ‖P ) ≥ d(tq ‖wq)
r + d(tu ‖wu)

s where T = arg inf
T�P, E

X∼T
[X]=[

tq
tu

]

D(T ‖P ).

Now repeating the proof of Theorem 4 give us the result.
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Proof of Lemma 1.1 We now turn to the proof Lemma 1.1. The main argument needed in
the proof of is contained in the following lemma, which can be seen as a variation of Fenchel’s
inequality.

Lemma 3.5. Let P be a probability distribution on a space Ω, Q a probability which is absolutely
continuous with respect to P , and φ : Ω→ R a function such that EP [exp(φ(X))] ≤ ∞. Then

D(Q ‖P ) + log E
X∼P

[exp(φ(X))] ≥ E
X∼Q

[φ(X)] .

and we have equality if and only if dQ
dP (x) = exp(φ(x))

EX∼P [exp(φ(X))] .

Proof. To ease notation we write p = dQ
dP . We note that

D(Q ‖P ) = E
X∼Q

[log p(X)] = E
X∼Q

[
log

p(X)

exp(φ(X))

]
+ E
X∼Q

[φ(X)] = E
X∼Q

[φ(X)]− E
X∼Q

[
log

exp(φ(X))

p(X)

]
.

Using Jensen’s inequality we get that

E
X∼Q

[
log

exp(φ(x))

p(X)

]
≤ log E

X∼Q

[
exp(φ(x))

dP

dQ
(x)

]
= log E

X∼P
[exp(φ(x))] .

Combining these two equations give us the inequality. Now we note that we have equality if and
only if eφ(x) dP

dQ(x) is constant, and since Q is a probability distribution this is equivalent with
dQ
dP (x) = exp(φ(x))

EX∼P [exp(φ(X))] .

We are now ready to prove Lemma 1.1.

Proof of Lemma 1.1. (9) ⇒ (10). Let QXY be a probability distribution which is absolutely
continuous with respect to PXY . We set exp(φX(x)) = dQX

dPX (x) and exp(φY (y)) = dQY
dPY (y).

From this we see that EX∼PX [exp(φX(X))] = EX∼Px

[
dQX
dPX (X)

]
= EX∼QX [1] = 1 and similarly

that EY∼PY [exp(φX(X))] = 1, hence we have that dQX
dPX (x) = exp(φX(x))

EX∼PX [exp(φX(X))] and dQY
dPY (y) =

exp(φY (y))
EY∼PY [exp(φX(Y ))] . Using (9) we get that

E
(X,Y )∼PXY

[exp(φX(X) + φY (Y )] ≤ E
X∼PX

[exp(rφX(X))]1/r E
Y∼PY

[exp(sφY (Y )]1/s ⇔

log E
(X,Y )∼PXY

[exp(φX(X) + φY (Y )] ≤ log EX∼PX [exp(rφX(X))]

r
+

log EY∼PY [exp(sφY (Y )]

s
.

Using Lemma 3.5 3 times we have that

log E
(X,Y )∼PXY

[exp(φX(X) + φY (Y ))] ≥ E
(X,Y )∼QXY

[φX(X) + φY (Y )]−D(QXY ‖PXY )

log E
X∼PX

[exp(φX(X))] = E
X∼QX

[φX(X)]−D(QX ‖PX)

log E
X∼PY

[exp(φY (Y ))] = E
Y∼QY

[φY (Y )]−D(QY ‖PY ) ,
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where the equalities hold since dQX
dPX (x) = exp(φX(x))

EX∼PX [exp(φX(X))] and dQY
dPY (y) = exp(φY (y))

EY∼PY [exp(φX(Y ))] . We

then get that

log E
(X,Y )∼PXY

[exp(φX(X) + φY (Y )] ≤ log EX∼PX [exp(rφX(X))]

r
+

log EY∼PY [exp(sφY (Y )]

s
⇒

E
(X,Y )∼QXY

[φX(X) + φY (Y )]−D(QXY ‖PXY )

≤ E
X∼QX

[φX(X)]−D(QX ‖PX) + E
Y∼QY

[φY (Y )]−D(QY ‖PY ) ⇔

D(QXY ‖PXY ) ≥ D(QX ‖PX)

r
+

D(QY ‖PY )

s
,

which proves that (9)⇒ (10).
(10)⇒ (9). Fix the functions f : ΩX → R and g : ΩY → R. We note that E(X,Y )∼PXY [f(X)g(Y )] ≤

E(X,Y )∼PXY [|f | (X) |g| (Y )] hence we can assume that f and g are non-negative. We define φX(x) =
log(f(x)) and φY (x) = log(g(x))17. Then (9) is equivalent with

E
(X,Y )∼PXY

[exp(φX(X) + φY (Y )] ≤ E
X∼PX

[exp(rφX(X))]1/r E
Y∼PY

[exp(sφY (Y )]1/s ⇔

log E
(X,Y )∼PXY

[exp(φX(X) + φY (Y )] ≤ log EX∼PX [exp(rφX(X))]

r
+

log EY∼PY [exp(sφY (Y )]

s
.

We define the probability distribution QXY by dQXY
dPXY (x, y) = exp(φX(X)+φY (Y )

E(X,Y )∼PXY [exp(φX(X)+φY (Y )] . It is easy

to see that QXY is indeed a probability distribution. Using (10) we get that

D(QXY ‖PXY ) ≥ D(QX ‖PX)

r
+

D(QY ‖PY )

s
.

Using Lemma 3.5 3 times we have that

D(QXY ‖PXY ) = E
(X,Y )∼QXY

[φX(X) + φY (Y )]− log E
(X,Y )∼PXY

[exp(φX(X) + φY (Y ))]

D(QX ‖PX) ≥ E
X∼QX

[φX(X)]− log E
X∼PX

[exp(φX(X))]

D(QY ‖PY ) ≥ E
Y∼QY

[φY (Y )]− log E
X∼PY

[exp(φY (Y ))] ,

where the equality holds since dQXY
dPXY (x, y) = exp(φX(X)+φY (Y )

E(X,Y )∼PXY [exp(φX(X)+φY (Y )] . We then get that

D(QXY ‖PXY ) ≥ D(QX ‖PX)

r
+

D(QY ‖PY )

s
⇒

E
(X,Y )∼QXY

[φX(X) + φY (Y )]− log E
(X,Y )∼PXY

[exp(φX(X) + φY (Y ))]

≥ E
X∼QX

[φX(X)]− log E
X∼PX

[exp(φX(X))] + E
Y∼QY

[φY (Y )]− log E
X∼PY

[exp(φY (Y ))] ⇔

log E
(X,Y )∼PXY

[exp(φX(X) + φY (Y )] ≤ log EX∼PX [exp(rφX(X))]

r
+

log EY∼PY [exp(sφY (Y )]

s
,

which proves that (10)⇒ (9).

17We define log(0) = −∞ and exp(−∞) = 0.
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3.4 Explicit Hypercontractive Bounds

In this section we show how to relate the directed noise operator to the lower bounds of Oleszkiewicz [53],
thereby giving direct lower bounds for a number of cases for s and r. By Theorem 3 and Lemma 3.3
this is the dual to proving optimal values (tq, tu) in our upper bound.

We start by with a standard lemma which shows that hypercontractivity of an operator implies
hypercontractivity of its adjoint.

Lemma 3.6. Let T : L2(Ω, π)→ L2(Ω, π′) be an operator with T ∗ : L2(Ω, π′)→ L2(Ω, π) being its
adjoint, and let 1 ≤ r, s <∞ with r′, s′ being their convex conjugates. Then

‖Tf‖Ls′ (π′) ≤ ‖f‖Lr(π)

holds for all f ∈ L2(Ω, π), if and only if

〈Tf, g〉L2(π′) = 〈f, T ∗g〉L2(π) ≤ ‖f‖Lr(π) ‖g‖Ls(π′)

holds for all f ∈ L2(Ω, π) and all g ∈ L2(Ω, π′), if and only if

‖T ∗g‖Lr′ (π) ≤ ‖g‖Ls(π′)

holds for all g ∈ L2(Ω, π′).

Proof. We assume that ‖Tf‖Ls′ (π′) ≤ ‖f‖Lr(π) holds for all f ∈ L2(Ω, π). Let f ∈ L2(Ω, π) and

g ∈ L2(Ω, π′) then by Hölder’s inequality we have that

〈Tf, g〉L2(π′) ≤ ‖Tf‖Ls′ (π′) ‖g‖Ls(π′) ≤ ‖f‖Lr(π) ‖g‖Ls(π′) .

Similarly, we assume that ‖T ∗g‖Lr′ (π) ≤ ‖g‖Ls(π′) holds for all g ∈ L2(Ω, π′). Let f ∈ L2(Ω, π)

and g ∈ L2(Ω, π′) then by Hölder’s inequality we have that

〈f, T ∗g〉L2(π) ≤ ‖f‖Lr(π′) ‖T
∗g‖Lr′ (π′) ≤ ‖f‖Lr(π) ‖g‖Ls′ (π′) .

Finally, we assume that 〈Tf, g〉L2(π′) ≤ ‖f‖Lr(π) ‖g‖Ls(π′) holds for all f ∈ L2(Ω, π) and all

g ∈ L2(Ω, π′). Let f ∈ L2(Ω, π) then using that Ls(π
′) is the dual norm of Ls′(π

′) we get that

‖Tf‖Ls′ (π′) = sup
‖g‖Ls(π′)=1

〈Tf, g〉L2(π′) ≤ sup
‖g‖Ls(π′)=1

‖f‖Ls(π) ‖g‖Lr(π′) = ‖f‖Lr(π) .

Similarly, let g ∈ L2(Ω, π′) then using that Lr(π) is the dual norm of Lr′(π) we get that

‖T ∗g‖Lr′ (π) = sup
‖f‖Lr(π)=1

〈f, T ∗g〉L2(π) ≤ sup
‖f‖Lr(π′)=1

‖f‖Lr(π) ‖g‖Ls(π′) = ‖g‖Ls(π′) ,

which finishes the proof.

Our hypercontractive results will be based on the tight hypercontractive inequality by Oleszkiewicz [53].

Theorem 5 ([53]). Let p ∈ (0, 1
2)∪ (1

2 , 1) and 1 ≤ r ≤ 2 then for any function f ∈ L2({0, 1}d , π⊗dp )
we have that ∥∥∥T (p)

ρ f
∥∥∥
L2(p)

≤ ‖f‖Lr(p) , F

where ρ = p−1/2(1− p)−1/2

√
(1−p)2−2/r−p2−2/r

p−2/r−(1−p)−2/r which is best possible.
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From this we get following tight hypercontractive inequalities for T p1→p2ρ .

Corollary 2. Let p1, p2 ∈ (0, 1
2) ∪ (1

2 , 1) and 1 ≤ r ≤ 2 then for any function f ∈ L2({0, 1}d , π⊗dp1 )
we have that ∥∥T p1→p2ρ f

∥∥
L2(p2)

≤ ‖f‖Lr(p1) ,

where ρ = p
−1/2
1 (1− p1)−1/2

√
(1−p1)2−2/r−p2−2/r

1

p
−2/r
1 −(1−p1)−2/r

which is best possible.

Proof. Using the Parseval-Plancherel identity and Lemma 3.1 we get that∥∥T p1→p2ρ f
∥∥2

L2(p2)
=
∑
S⊆[d]

̂T p1→p2ρ f
(p2)

(S)2 =
∑
S⊆[d]

ρ2|S| ̂T p1→p2ρ f
(p2)

(S)2 =
∥∥∥T (p1)f

∥∥∥2

L2(p1)
,

hence the result follows from Theorem 5.

Corollary 3. Let p1, p2 ∈ (0, 1
2) ∪ (1

2 , 1) and 1 ≤ s ≤ 2 with s′ the convex conjugate of s, then for

any function f ∈ L2({0, 1}d , π⊗dp1 ) we have that∥∥T p1→p2ρ f
∥∥
Ls′ (p2)

≤ ‖f‖L2(p1) ,

where ρ = p
−1/2
2 (1− p2)−1/2

√
(1−p2)2−2/s−p2−2/s

2

p
−2/s
2 −(1−p2)−2/s

which is best possible.

Proof. By Lemma 3.6 we get that the result is true if and only if∥∥T p2→p1ρ g
∥∥
L2(p1)

≤ ‖g‖Ls(p2) ,

for all functions g ∈ L2({0, 1} , πp2). Now the result follows by using Corollary 2.

We also get a hypercontractive inequality for the standard noise operator T
(p)
ρ .

Corollary 4. Let p ∈ (0, 1
2) ∪ (1

2 , 1) and 1 ≤ r ≤ 2 with convex conjugate r′, then for any function

f ∈ L2({0, 1}d , π⊗dp ) we have that ∥∥∥T (p)
ρ f

∥∥∥
Lr′ (p)

≤ ‖f‖Lr(p) ,

where ρ = p(1− p) (1−p)2−2/r−p2−2/r

p−2/r−(1−p)−2/r which is best possible.

Proof. Using Lemma 3.6 we get the result holds if and only if

〈T (p)
ρ f, g〉L2(p) ≤ ‖f‖Lr(p) ‖g‖Lr(p) ,

holds for all f, g ∈ L2({0, 1}d , π⊗dp ). First we note that the result is true by using Cauchy-Schwartz
and Theorem 5

〈T (p)
ρ f, g〉L2(p) = 〈T (p)√

ρf, T
(p)√
ρg〉L2(p) ≤

∥∥∥T (p)√
ρf
∥∥∥
L2p

∥∥∥T (p)√
ρg
∥∥∥
L2p
≤ ‖f‖Lrp ‖f‖Lrp

Now to see that ρ is best possible we set g = f which give us that∥∥∥T (p)√
ρf
∥∥∥2

L2p
= 〈T (p)

ρ f, f〉L2(p) ≤ ‖f‖2Lrp ,

so Theorem 5 gives that ρ is best possible.
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We will use Corollary 4 to show that setting (tq, tu) = (1 − w, 1 − w) is an optimal threshold

for the (w,w,w1, w
2)-GapSS problem. First of we note that ρ = p(1 − p) (1−p)2−2/r−p2−2/r

p−2/r−(1−p)−2/r can be

rewritten as r = 2 log τ

log ρ+τ

ρ+τ−1

where τ = 1−p
p . Using Lemma 3.3 we get that ρ = w1−w2

w(1−w) , τ = 1−w
w , and

that

1

r
ρq +

1

r′
ρu ≥

2

r
− 1 .

Now we have that ρq = ρu =
log

w(w1−2w+1)
w1(1−w)

log w
1−w

, and we find that

2

r
− 1 =

log ρ+τ
ρ+τ−1

log τ
− 1 =

log τ−1 ρ+τ
ρ+τ−1

log τ
.

It is then easy to check that τ−1 ρ+τ
ρ+τ−1 = w1(1−w)

w(w1−2w+1) , which then shows that (tq, tu) = (1−w, 1−w)
is an

4 Other Algorithms

We show two results that, while orthogonal to Supermajorities, help us understand them and how
they fit within the space of Similarity Search algorithms.

The first result is an optimal affine embedding of sets onto the sphere. This result is interesting
in its own right, as it results in an algorithm that is in many cases better than the state of the art,
and which can be implemented very easily in systems that can already solve Euclidean or Spherical
Nearest Neighbours. The result gives a simple, general condition a Spherical LSH scheme must
meet for the embedding to be optimal, and we show that both SimHash and Spherical LSH meets
it.

The second result is also a new algorithm. In particular, it is a mix between Chosen Path and
MinHash, which always achieves ρ values lower than both of them. It is in a sense a simple answer
to the open problem in [28] about how to beat MinHash consistently. More interesting though, is
that it sheds light on what makes Supermajorities work: It balances the amount of information
pulled from sets vs. their complements. The proof is also conceptually interesting, since it proves
that it is never advantageous to combine multiple Locality Sensitive Filter families.

4.1 Embedding onto the Sphere

We show, that if an algorithm has exponent ρ(α, β) = f(α)/f(β) where α is the cosine similarity
between good points and β is the similarity between bad points on the sphere; then assuming some
light properties on f , which contain both Spherical and Hyperplane LSH, two affine embedding
of sets x ∈ {0, 1}d to Sd−1 that minimizes ρ once the new cosine similarities are calculated, is
x 7→ (x− w)/

√
w(1− w) where w = |x|/d. While the mapping is allowed to depend on any of the

GapSS parameters, it curiously only cares about the weight of the set itself. For fairness, all our
plots, such as Figure 2, uses this embedding when comparing Supermajorities to Spherical LSH.

Lemma 4.1 (Embedding Lemma). Let g, h : {0, 1}d → Rd be function on the form g(x) = a1x+ b1
and h(y) = a2y + b2. Let ρ(x, y, y′) = f(α(x, y))/f(α(x, y′)) where α(x, y) = 〈x, y〉/‖x‖‖y‖ be such
that

f(z) ≥ 0, d
dz

(
(±1− z) ddz log f(z)

)
≥ 0 and d3

dz3
log f(z) ≤ 0
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Figure 6: Given a GapSS instance with wq = .3 and wu = .2, the optimal affine embedding of
the data (represented as vectors x ∈ {0, 1}|U |) onto the sphere, turns out to be normalizing the
“mean” and “variance”. That is, before scaling down to ‖x‖2 = 1, we subtract respectively wq and
wu from all coordinates. The plot shows the “ρ-value” achieved by different spherical algorithms
as the among subtracted is varied: The x-axis, a, is the amount subtracted from queries and the
y-axis, b, is the amount subtracted from datasets.

for all z ∈ [−1, 1]. Assume we know that ‖x‖22 = wqd, ‖y‖22 = wud, 〈x, y′〉 = w1d and 〈x, y〉 = w2d,
then arg mina1,a2,b1,b2 ρ(g(x), h(y), h(y′)) = (1, 1,−wq,−wu).

In this section we will show that Hyperplane [24] and Spherical [10] LSH both satisfy the
requirements of the lemma. Hence we get two algorithms with ρ-values:

ρhp =
log(1− arccos(α)/π)

log(1− arccos(β)/π)
, ρsp =

1− α
1 + α

1 + β

1− β
.

where α =
w1−wqwu√

wq(1−wq)wu(1−wu)
and β =

w2−wqwu√
wq(1−wq)wu(1−wu)

, and space/time trade-offs using the

ρq, ρu values in [27]. 18 Figure 6 shows how ρ varies with different translations a, b.
Taking tq = wq(1+o(1)) and tu = wu(1+o(1)) in theorem 1 recovers ρsp by standard arguments.

This implies that theorem 1 dominates Spherical LSH (for binary data).

Lemma 4.2. The functions f(z) = (1 − z)/(1 + z) for Spherical LSH and f(z) = − log(1 −
arccos(z)/π) for Hyperplane LSH satisfy lemma 4.1.

Proof. For Spherical LSH we have f(z) = (1− z)/(1 + z) and get

d
dz

(
(±1− z) ddz log f(z)

)
= 2/(1± z)2 ≥ 0,

d3

dz3
log f(z) = −4(1 + 3z2)/(1− z2)3 ≤ 0.

18Unfortunately the space/time aren’t on a form applicable to lemma 4.1. From numerical experiments we however
still conjecture that the embedding is optimal for those as well.
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For Hyperplane LSH we have f(z) = − log(1− arccos(z)/π) and get

d
dz

(
(±1− z) ddz log f(z)

)
=

(arccos(z)∓
√

1− z2 − π) log(1− arccos(z)/π)∓
√

1− z2

(1± z)
√

1− z2(π − arccos(z))2 log(1− arccos(z)/π)2
.

In both cases the denominator is positive, and the numerator can be shown to be likewise by
applying the inequalities

√
1− z2 ≤ arccos(z),

√
1− z2 + arccos(z) ≤ π and x ≤ log(1 + x).

The d3

dz3
log f(z) ≤ 0 requirement is a bit trickier, but a numerical optimization shows that it’s

in fact less than −1.53.

Finally we prove the embedding lemma:

Proof of lemma 4.1. We have

α =
〈x+ a, y + b〉
‖x+ a‖‖y + b‖

=
w1 + wqb+ wua+ ab√

(wq(1 + a)2 + (1− wq)a2)(wu(1 + b)2 + (1− wu)b2)

and equivalent with w2 for β. We’d like to show that a = −wq, b = −wu is a minimum for
ρ = f(α)/f(β).

Unfortunately the f ’s we are interested in are usually not convex, so it is not even clear that there
is just one minimum. To proceed, we make the following substitution a→ (c+d)

√
wq(1− wq)−wq,

b→ (c− d)
√
wu(1− wu)− wu to get

α(c, d) =
cd+

w1−wqwu√
wq(1−wq)wu(1−wu)√

(1 + c2)(1 + d2)
.

We can further substitute cd 7→ rs and
√

(1 + c2)(1 + d2) 7→ r + 1 or r ≥ 0, −1 ≤ s ≤ 1, since
1 + cd ≤

√
(1 + c2)(1 + d2) by Cauchy Schwartz, and (cd,

√
(1 + c2)(1 + d2)) can take all values in

this region.

The goal is now to show that h = f
(
rs+x
r+1

)/
f
(
rs+y
r+1

)
, where 1 ≥ x ≥ y ≥ −1, is increasing

in r. This will imply that the optimal value for c and d is 0, which further implies that a = −wq,
b = −wu for the lemma.

We first show that h is quasi-concave in s, so we may limit ourselves to s = ±1. Note that

log h = log f
(
rs+x
r+1

)
− log f

(
rs+y
r+1

)
, and that d2

ds2
log f

(
rs+x
r+1

)
=
(

r
1+r

)2
d2

dz2
log f(z) by the chain

rule. Hence it follows from the assumptions that h is log-concave, which implies quasi-concavity as
needed.

We now consider s = ±1 to be a constant. We need to show that d
drh ≥ 0. Calculating,

d

dr
f

(
rs+ x

r + 1

)/
f

(
rs+ y

r + 1

)
=

(s− x)f
(
rs+y
r+1

)
f ′
(
rs+x
r+1

)
− (s− y)f

(
rs+x
r+1

)
f ′
(
rs+y
r+1

)
(1 + r)2f

(
rs+y
r+1

)2 .

Since f ≥ 0 it suffices to show d
dx(s − x)f ′

(
rs+x
r+1

)/
f
(
rs+x
r+1

)
≥ 0. If we substitute z = rs+x

r+1 ,

z ∈ [−1, 1], we can write the requirement as d
dz (s− z)f ′(z)/f(z) ≥ 0 or d

dz

(
(±1− z) ddz log f(z)

)
≥

0.
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4.2 A MinHash Dominating Family

Consider the classical MinHash scheme: A permutation h : [d] → [d] is sampled at random, and
y ⊆ {0, 1}d is placed in bucket i ∈ [m] if h(i) ∈ y and ∀j<ih(j) 6∈ y. The probability for a collision
between two sets q, y is then |q ∩ y|/(|q| + |y| − |q ∩ y|) by a standard argument which implies an
exponent of ρmh = log w1

wq+wu−w1

/
log w2

wq+wu−w2
.

Now consider building multiple independent such MinHash tables, but keeping only the kth
bucket in each one. That gives a Locality Sensitive Filter family, which we will analyse in this
section.

The Locality Sensitive Filter approach to similarity search is an extension by Becker et al. [16]
to the Locality Sensitive Hashing framework by Indyk and Motwani [39]. We will use the following
definition by Christiani [27], which we have slightly extended to support separate universes for
query and data points:

Definition 4 (LSF). Let X and Y be some universes, let S : X × Y → R be a similarity func-
tion, and let F be a probability distribution over {(Q,U) | Q ⊆ X,U ⊆ Y }. We say that F is
(s1, s2, p1, p2, pq, pu)-sensitive if for all points x ∈ X, y ∈ Y and (Q,U) sampled randomly from F
the following holds:

1. If S(x, y) ≥ s1 then Pr[x ∈ Q, y ∈ U ] ≥ p1.

2. If S(x, y) ≤ s2 then Pr[x ∈ Q, y ∈ U ] ≤ p2.

3. Pr[x ∈ Q] ≤ pq and Pr[x ∈ U ] ≤ pu.

We refer to (Q,U) as a filter and to Q as the query filter and U as the update filter.

We first state the LSF-Symmetrization lemma implicit in [28]:

Lemma 4.3 (LSF-Symmetrization). Given a (p1, p2, pq, pu)-sensitive LSF-family, we can create a
new family that is (p1

q
p , p2

q
p , q, q)-sensitive, where p = max{pq, pu} and q = min{pq, pu}.

For some values of p1, p2, pq, pu this will be better than simply taking max(ρu, ρq). In particular
when symmetrization may reduce ρu by a lot by reducing its denominator.

Proof. W.l.o.g. assume pq ≥ pu. When sampling a query filter, Q ⊆ U , pick a random number
% ∈ [0, 1]. If % > pu/pq use ∅ instead of Q. The new family then has p′q = pq · pu/pq and so on
giving the lemma.

Getting back to MinHash, we note that the “keeping only the ith bucket” family discussed
above, corresponds sampling a permutation s of Y and taking the filter

U = {x | si ∈ x ∧ s0 6∈ x ∧ · · · ∧ si−1 6∈ x}.

That is, the collection of x such that the first i − 1 values of s are not in x (since then x would
have been put in that earlier bucket), but the ith element of s is in x (since otherwise x would have
been put in a later bucket.)

Using just one of these families, combined with symmetrization, gives the ρ value:

ρi = log
(1− wq − wu + w1)iw1

max{(1− wq)iwq, (1− wu)iwu}

/
log

(1− wq − wu + w2)iw2

max{(1− wq)iwq, (1− wu)iwu}
.
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This scheme is a generalization of Chosen Path, since taking i = 0 recovers exactly that algo-
rithm. However, as we increase i, we see that the weight gradually shifts from the present elements
(symbolized by w1, w2, wq and wu) to the absent elements (symbolized by (1−wq−wu+wq), etc.).

We will now show that for a given set of (wq, wu, w1, w2) there is always an optimal i which is
better than using all of the i, which is what MinHash does. The exact goal is to show

ρmh = log
w1

wq + wu − w1

/
log

w2

wq + wu − w2
≥ min

i≥0
ρi.

For this we show the following lemma, which intuitively says that it is never advantageous to
combine multiple filter families:

Lemma 4.4. The function f(x, y, z, t) = log(max{x, y}/z)/ log(max{x, y}/t), defined for min{x, y} ≥
z ≥ t > 0, is quasi-concave.

This means in particular that

log(max{x+ x′, y + y′}/(z + z′))

log(max{x+ x′, y + y′}/(t+ t′))
≥ min

{
log(max{x, y}/z)
log(max{x, y}/t)

,
log(max{x′, y′}/z′)
log(max{x′, y′}/t′)

}
,

when the variables are in the range of the lemma.

Proof. We need to show that the set

{(x, y, z, t) : log(max{x, y}/z)/ log(max{x, y}/t) ≥ α} = {(x, y, z, t) : max{x, y}1−αtα ≥ z}

is convex for all α ∈ [0, 1] (since z ≥ t so f(x, y, z, t) ∈ [0, 1]). This would follow if g(x, y, t) =
max{x, y}1−αtα would be quasi-concave itself, and the eigenvalues of the Hessian of g are exactly
0, 0 and −(1− α)αtα−2 max{x, y}−α−1

(
max{x, y}2 + t2

)
so g is even concave!

We can then show that MinHash is always dominated by one of the filters described, as

ρmh =
log w1

wq+wu−w1

log w2
wq+wu−w2

=
log

∑
i≥0(1−wq−wu+w1)iw1

max{
∑
i≥0(1−wq)iwq ,

∑
i≥0(1−wu)iwu}

log
∑
i≥0(1−wq−wu+w2)iw2

max{
∑
i≥0(1−wq)iwq ,

∑
i≥0(1−wu)iwu}

≥ min
i≥0

log
(1−wq−wu+w1)iw1

max{(1−wq)iwq ,(1−wu)iwu}

log
(1−wq−wu+w2)iw2

max{(1−wq)iwq ,(1−wu)iwu}

,

where the right hand side is exactly the symmetrization of the “only bucket i” filters. By mono-
tonicity of (1−wq)iwq and (1−wu)iwu we can further argue that it is even possible to limit ourselves
to one of i ∈ {0,∞, log(wq/wu)/ log((1 − wq)/(1 − wu))}, where the first gives Chosen Path, the
second gives Chosen Path on the complemented sets, and the last gives a balanced trade-off where
(1− wq)iwq = (1− wu)iwu.

5 Conclusion and Open Problems

For a long time there was a debate [65] about why MinHash worked so well for sets, compared
to other more general methods, like SimHash. It was a mystery why this method, so foreign to
the frameworks of Spherical LSF and Chosen Path could still do so much better. For asymmetric
problems like Subset Search, it was entirely open how far ρ could be reduced.

This paper finally solves the mystery of MinHash and unifies the ideas and frameworks of
Euclidean and Set Similarity Search.
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By showing that supermajorities indeed solve the general problem optimally, we not only unify
and explain the performance of the previous literature, but also recover major performance im-
provements, space/time trade-offs, and the ability to solve Set Similarity Search for any similarity
measure.

We propose the following open problems for future research:

LSH with polylog time When parametrized accordingly, we get a data structure with eÕ(
√

logn)

query time and nO(1) space. Using Spherical LSH one can get similar runtime, though with
a higher polynomial space usage. Employing a tighter analysis of our algorithm, the query
time can be reduced to eÕ((logn)1/3), which by comparison with we conjecture is tight for the
approach. A major open question is whether one can get Õ(1)?

Data-dependent Data-dependent LSH is able to reduce approximate similarity search problems
to the case where far points are as far away as had they been random. For (wq, wu, w1, w2)-
GapSS this corresponds to the case w2 = wqwu. This would finally give the “optimal”
algorithm for GapSS without any “non-data-dependent” disclaimers.

Sparse, non-binary data Our lower bounds really hold for a much larger class of problems,
including cosine similarity search on sparse data in Rd. However, our upper bounds currently
focus on binary data only. It would be interesting to generalize our algorithm to this and
other types of data for which Supermajorities are also optimal.

Sketching We have shown that Supermajorities can shave large polynomial factors of space and
query time in LSH. Can they be used to give similar gains in the field of sketching sets under
various similarity measures? Can one expand the work of [55] and show optimality of some
intersection sketching scheme?
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Morten Stöckel, John Kallaugher, Ninh Pham, Evangelos Kipouridis, Peter Rasmussen, Anders
Aamand, Mikkel Thorup and everyone else who has given feedback. Finally, we really appreciate
the comprehensive comments from the anonymous reviewers!

Thomas D. Ahle and Jakob B. T. Knudsen are partly supported by Thorup’s Investigator Grant
16582, Basic Algorithms Research Copenhagen (BARC), from the VILLUM Foundation.

References

[1] Amir Abboud, Aviad Rubinstein, and Ryan Williams. Distributed pcp theorems for hardness
of approximation in p. In 2017 IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS), pages 25–36. IEEE, 2017.

[2] Amirali Abdullah and Suresh Venkatasubramanian. A directed isoperimetric inequality with
application to bregman near neighbor lower bounds. In Proceedings of the forty-seventh annual
ACM symposium on Theory of computing, pages 509–518, 2015.

53



[3] Parag Agrawal, Arvind Arasu, and Raghav Kaushik. On indexing error-tolerant set contain-
ment. In Proceedings of the 2010 ACM SIGMOD International Conference on Management
of data, pages 927–938. ACM, 2010.

[4] Daniel Ahlberg, Erik Broman, Simon Griffiths, and Robert Morris. Noise sensitivity in con-
tinuum percolation. Israel Journal of Mathematics, 201(2):847–899, 2014.

[5] Thomas Dybdahl Ahle, Rasmus Pagh, Ilya Razenshteyn, and Francesco Silvestri. On the com-
plexity of inner product similarity join. In Proceedings of the 35th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, pages 151–164. ACM, 2016.

[6] Josh Alman, Timothy M Chan, and Ryan Williams. Polynomial representations of threshold
functions and algorithmic applications. In 2016 IEEE 57th Annual Symposium on Foundations
of Computer Science (FOCS), pages 467–476. IEEE, 2016.

[7] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In Foundations of Computer Science, 2006. FOCS’06. 47th
Annual IEEE Symposium on, pages 459–468. IEEE, 2006.

[8] Alexandr Andoni, Piotr Indyk, Huy L Nguyen, and Ilya Razenshteyn. Beyond locality-sensitive
hashing. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 1018–1028. Society for Industrial and Applied Mathematics, 2014.

[9] Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten. Optimal hashing-
based time-space trade-offs for approximate near neighbors. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 47–66. Society for In-
dustrial and Applied Mathematics, 2017.

[10] Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten. Optimal hashing-
based time-space trade-offs for approximate near neighbors. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 47–66. SIAM, 2017.

[11] Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate
near neighbors. In Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of
Computing, pages 793–801. ACM, 2015.

[12] Alexandr Andoni, Ilya Razenshteyn, and Negev Shekel Nosatzki. Lsh forest: Practical algo-
rithms made theoretical. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 67–78. SIAM, 2017.

[13] Alexandr Andoni and Ilya Razensteyn. Tight lower bounds for data-dependent locality-
sensitive hashing. In 32nd International Symposium on Computational Geometry (SoCG 2016).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[14] Roger C Baker, Glyn Harman, and János Pintz. The difference between consecutive primes,
ii. Proceedings of the London Mathematical Society, 83(3):532–562, 2001.

[15] Mayank Bawa, Tyson Condie, and Prasanna Ganesan. Lsh forest: self-tuning indexes for
similarity search. In Proceedings of the 14th international conference on World Wide Web,
pages 651–660, 2005.

54



[16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest
neighbor searching with applications to lattice sieving. In Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 10–24. SIAM, 2016.

[17] William Beckner. Inequalities in fourier analysis. Annals of Mathematics, pages 159–182, 1975.

[18] John D Biggins. Martingale convergence in the branching random walk. Journal of Applied
Probability, 14(1):25–37, 1977.

[19] Aline Bonami. ’E study of the fourier coefficients of the functions of l p(g). In Annals of the
Fourier Institute, volume 20, pages 335–402, 1970.

[20] Andrei Z Broder. On the resemblance and containment of documents. In Compression and
Complexity of Sequences 1997. Proceedings, pages 21–29. IEEE, 1997.

[21] Andrei Z Broder, Steven C Glassman, Mark S Manasse, and Geoffrey Zweig. Syntactic clus-
tering of the web. Computer Networks and ISDN Systems, 29(8-13):1157–1166, 1997.

[22] Timothy M Chan. Orthogonal range searching in moderate dimensions: kd trees and range
trees strike back. In 33rd International Symposium on Computational Geometry (SoCG 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[23] Moses Charikar, Piotr Indyk, and Rina Panigrahy. New algorithms for subset query, partial
match, orthogonal range searching, and related problems. In International Colloquium on
Automata, Languages, and Programming, pages 451–462. Springer, 2002.

[24] Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings
of the thiry-fourth annual ACM Symposium on Theory of Computing, pages 380–388. ACM,
2002.

[25] Lijie Chen and Ryan Williams. An equivalence class for orthogonal vectors. In Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 21–40. SIAM,
2019.

[26] Seung-Seok Choi, Sung-Hyuk Cha, and Charles C Tappert. A survey of binary similarity and
distance measures. Journal of Systemics, Cybernetics and Informatics, 8(1):43–48, 2010.

[27] Tobias Christiani. A framework for similarity search with space-time tradeoffs using locality-
sensitive filtering. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 31–46. SIAM, 2017.

[28] Tobias Christiani and Rasmus Pagh. Set similarity search beyond minhash. In Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal,
QC, Canada, June 19-23, 2017, pages 1094–1107, 2017. URL: https://doi.org/10.1145/
3055399.3055443, doi:10.1145/3055399.3055443.

[29] Tobias Christiani, Rasmus Pagh, and Mikkel Thorup. Confirmation sampling for exact nearest
neighbor search. arXiv preprint arXiv:1812.02603, 2018.

[30] Edith Cohen and Haim Kaplan. Leveraging discarded samples for tighter estimation of
multiple-set aggregates. ACM SIGMETRICS Performance Evaluation Review, 37(1):251–262,
2009.

55

https://doi.org/10.1145/3055399.3055443
https://doi.org/10.1145/3055399.3055443
http://dx.doi.org/10.1145/3055399.3055443


[31] Harald Cramér. On the order of magnitude of the difference between consecutive prime num-
bers. Acta Arithmetica, 2:23–46, 1936.

[32] Ian H. Dinwoodie. Large deviations techniques and applications (amir dembo and ofer
zeitouni). SIAM Review, 36(2):303–304, 1994. URL: https://doi.org/10.1137/1036078,
doi:10.1137/1036078.

[33] Moshe Dubiner. Bucketing coding and information theory for the statistical high-dimensional
nearest-neighbor problem. IEEE Transactions on Information Theory, 56(8):4166–4179, 2010.

[34] Raul Castro Fernandez, Jisoo Min, Demitri Nava, and Samuel Madden. Lazo: A cardinality-
based method for coupled estimation of jaccard similarity and containment. In ICDE, 2019.
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A Proof of Lemma 3.3

This proof in this section mostly follows [9], with a few changes to work with separate spaces Q
and U .

Lemma 3.3. Let Q and U be some spaces and PQU a probability distribution on Q×U . Consider
any list-of-points data structure for PQU -random instances of n points, which uses expected space
n1+ρu, has expected query time nρq−on(1), and succeeds with probability at least 0.99. Let r, s ∈ [1,∞]
satisfy

E
(X,Y )∼PQU

[f(X)g(Y )] ≤ ‖f(X)‖Lr(PQ) ‖f(Y )‖Ls(PU ) ,

for all functions f : Q→ R and g : U → R. Then

1

r
ρq +

1

r′
ρu ≥

1

r
+

1

s
− 1 ,

where r′ = r
r−1 is the convex conjugate of r.
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Proof. Fix a data structure D, where Ai specifies which dataset points are placed in Li. Addition-
ally, we define Bi = {v | i ∈ I(v)} to the set of query points which scan Li. We sample a random
dataset point u and then a random query point v from the neighborhood of u. Let

γi = Pr [v ∈ Bi |u ∈ Ai]

represent the probability that query v scans the list Li conditioned on u being in Li. The query
time for D is given by the following expression

T =
∑
i∈[m]

[v ∈ Bi]

1 +
∑
j∈[n]

[uj ∈ Ai]


E [T ] =

∑
i∈[m]

Pr [v ∈ Bi] +
∑
i∈[m]

γi Pr [u ∈ Ai] + (n− 1)
∑
i∈[m]

Pr [u ∈ Ai] Pr [v ∈ Bi] .

We want to lower bound Pr [v ∈ Bi], so let 1 ≤ r, s be any values such that PQU is (r, s)-
hypercontractive. We then get that

γi Pr [u ∈ Ai] = Pr [u ∈ Ai ∧ v ∈ Bi]

= E [[u ∈ Ai][v ∈ Bi]]

≤ ‖[u ∈ Ai]‖Ls(p1) ‖[v ∈ Bi]‖Lr(p2)

= Pr [u ∈ Ai]1/s Pr [v ∈ Bi]1/r

Hence we get that Pr [v ∈ Bi] ≥ γri Pr [u ∈ Ai]r/s
′
. We define τi = Pr [u ∈ Ai] and get that

E [T ] ≥
∑
i∈[m]

γri τ
r/s′

i +
∑
i∈[m]

γiτi + (n− 1)
∑
i∈[m]

γri τ
1+r/s′

i .

Since the data structure succeeds with probability γ we have that∑
i∈[m]

τiγi ≥ Pr [∃i ∈ [m] : v ∈ Bi, u ∈ Ai] = γ .

Since D uses at most S space we have that

m+
∑
i∈[m]

|Ai| ≤ S ⇒
∑
i∈[m]

τi ≤
S

n
.

We then get that we want to minimize

E [T ] ≥
∑
i∈[m]

γri τ
r/s′

i +
∑
i∈[m]

γiτi + (n− 1)
∑
i∈[m]

γri τ
1+r/s′

i ≥
∑
i∈[m]

γri τ
r
i (τ
−r/s
i + (n− 1)τ

1−r/s
i ) ,

given the constraints ∑
i∈[m]

τiγi ≥ γ

∑
i∈[m]

τi ≤
S

n
.
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First we fix (τi)i∈[m] and minimize the function with respect to (γi)i∈[m]. Using Lagrange multipliers
this is equivalent to minimizing the function

f((γi)i∈[m], λ, ν) =
∑
i∈[m]

γri τ
r
i (τ
−r/s
i + (n− 1)τ

1−r/s
i )− λ(

∑
i∈[m]

τiγi − γ − ν2)

We find the critical points ∇f = 0:

rγr−1
i τ ri (τ

−r/s
i + (n− 1)τ

1−r/s
i ) = λτi∑

i∈[m]

τiγi = γ + ν2

2λν = 0

for all i ∈ [m]. We note that since γ > 0 then λ > 0 and hence ν = 0. The first inequality can be
rewritten as

γr−1
i τ r−1

i =
λ

r(τ
−r/s
i + (n− 1)τ

1−r/s
i )

⇔

γiτi =

(
λ

r(τ
−r/s
i + (n− 1)τ

1−r/s
i )

)r′/r
Combining this with

∑
i∈[m] τiγi = γ give us that

∑
i∈[m]

(
λ

r(τ
−r/s
i + (n− 1)τ

1−r/s
i )

)r′/r
= γ ⇔

λr
′/r =

γ∑
i∈[m]

(
1

r(τ
−r/s
i +(n−1)τ

1−r/s
i )

)r′/r

We define ti =

(
1

τ
−r/s
i +(n−1)τ

1−r/s
i

)r′/r
and get that

γiτi = γ
ti∑

i∈[m] ti
⇔

γri τ
r
i = γr

tri
(
∑

i∈[m] ti)
r

We then get that our original function becomes

γr
∑
i∈[m]

tri
(
∑

i∈[m] ti)
r
t
−r/r′
i = γr

∑
i∈[m]

ti
(
∑

i∈[m] ti)
r

= γr(
∑
i∈[m]

ti)
−(r−1) = γr(

∑
i∈[m]

ti)
−r/r′

So we want to maximize

∑
i∈[m]

ti =
∑
i∈[m]

(
1

τ
−r/s
i + (n− 1)τ

1−r/s
i

)r′/r
=
∑
i∈[m]

τ
r′/s
i

(1 + (n− 1)τi)r
′/r

We now consider two different cases.
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Case 1. r > s. We know that τi ≤ 1 so we get that

∑
i∈[m]

τ
r′/s
i

(1 + (n− 1)τi)r
′/r
≤
∑
i∈[m]

τ
r′(1/s−1/r)
i

nr′/r

Since r′(1/s− 1/r) > 0 then we can use the power-mean inequality to get

∑
i∈[m]

τ
r′(1/s−1/r)
i

nr′/r
≤ m

nr′/r

(∑
i∈[m] τi

m

)r′(1/s−1/r)

≤ mr′−r′/s

nr′/r

(
S

n

)r′(1/s−1/r)

=
mr′/s′

nr′/s
Sr
′(1/s−1/r)

≤ Sr
′/s′+r′(1/s−1/r)

nr′/s

=
S

nr′/s

where we have used that max
{
m,n

∑
i∈[m] τi

}
≤ S.

Case 2. r ≤ s We find the derivatives

r′

s t
r′/s−1
i (1 + (n− 1)τi)

r′/r − (n− 1) r
′

r (1 + (n− 1)τi)
r′/r−1t

r′/s
i

(1 + (n− 1)τi)2r′/r

=
r′t

r′/s−1
i

(1 + (n− 1)τi)r
′/r+1

(
1

s
(1 + (n− 1)τi)− (n− 1)

1

r
τi

)

Case 2.1. r < s We note that the function is maximized when we set τi =
1
s

(n−1)( 1
r
− 1
s

)
=

r
(n−1)(s−r) . This give us that

∑
i∈[m]

τ
r′/s
i

(1 + (n− 1)τi)r
′/r
≤ m

(
r

(n−1)(s−r)

)r′/s
(

1 + r
s−r

)r′/r ≤ S

nr′/s

(
2r
s−r

)r′/s
(

s
s−r

)r′/r
where we have used that m ≤ S and n ≥ 2.

m
r

(n− 1)(s− r)
≤ S

n
⇒ m ≤ S (n− 1)(s− r)

nr

Case 2.2. r = s We note that the function is increasing in τi so it is maximized when τi = 1.
Then we get that

∑
i∈[m]

τ
r′/s
i

(1 + (n− 1)τi)r
′/r
≤ m

nr′/r
=

S

nr′/r
=

S

nr′/s
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where we have used that m ≤ S and r = s.

From this we note that if we set K = max

{
1,

( 2r
s−r )

r′/s

( s
s−r )

r′/r

}
then

∑
i∈[m]

τ
r′/s
i

(1+(n−1)τi)r
′/r ≤ S

nr
′/sK.

Now we can give the final lower bound on E [T ]:

E [T ] ≥ γr(
∑
i∈[m]

ti)
−r/r′ ≥ γr

(
S

nr′/s
K

)−r/r′
= γrK−r/r

′
S−r/r

′
nr/s

From this we get the result we want

ρq ≥ −
r

r′
(1 + ρu) +

r

s
− on(1)⇔

1

r
ρq +

1

r′
ρu ≥

1

s
− 1

r′
− on(1)

62


	Introduction
	Supermajorities
	Upper Bounds
	Lower Bounds
	Technical Overview
	Related Work

	The Algorithm
	Full Theorem
	Bounds on Branching
	Central Random Walks

	Lower Bounds
	p-biased Analysis
	Preliminaries
	Noise

	Symmetric Lower bound
	General Lower Bound
	Explicit Hypercontractive Bounds

	Other Algorithms
	Embedding onto the Sphere
	A MinHash Dominating Family

	Conclusion and Open Problems
	Acknowledgements

	Proof of lem:hypercontractive-to-lower-bound

