
88 LXF206 January 2016 www.linuxformat.com

Python

whatever the quantity this might be, I desire to receive it”.

The king soon realised that there was not enough wheat in

the world to fulfil this demand, and once again was

impressed. There are various endings to this story, in one

Sissa is given a position within the king’s court, in another he

is executed for being a smart arse. Hopefully this tutorial’s

chess treatment will feature neither execution nor LXF towers

being buried in mountains of wheat.

Chess is a complicated game – all the pieces move

differently depending on their circumstances, there are

various extraordinary moves (eg en passent pawn capture,

castling) and pawns get promoted if they make it all the way

to the other side. As a result, a surfeit of pitfalls present

themselves to the chess-programming dilettante, so rather

than spending a whole tutorial falling into traps we’re going to

borrow the code from Thomas Ahle’s Sunfish – a complete

chess engine programmed in Python. There’s no shortage of

chess engines: from the classic GNU Chess to the Kasparov-

beating Deep Blue (1997) to the pack-leading Stockfish.

Chess engines on their own generally do not come with their

own GUI, their code being mostly devoted to the not

inconsiderable problem of finding the best move for a given

position. Some (including Sunfish) allow you to play via a text

console, but most will talk to an external GUI, such as xboard,

via a protocol such as the Universal Chess Interface (UCI) or

WinBoard. Besides providing nice pictures of the action, this

enables us to play against different engines from a single

program. Furthermore, we can pit engine against engine and

enjoy chess as a spectator sport.

The Sunfish engine
We’ll assume that you know how to play chess, but if you

don’t you can practice by playing against Thomas’s Sunfish

engine. You’ll find the code on the LXFDVD in the Tutorials/

Chess directory. Copy this directory to your home folder, and

then run it with:

$ cd ~/Chess

$ python sunfish.py

The program uses Unicode glyphs to display the pieces in

the terminal, making it look a little more chess-like than GNU

Chess. Check the box (see Installing Xbound and Interfacing

with Sunfish) to see how to enjoy graphical play. Moves are

inputted by specifying the starting and ending coordinates, so

the aggressive opening which moves the king’s pawn to e4

would be inputted e2e4. Note that this is slightly longer than

the more common algebraic notation (in which the previous

move would be written e4), but makes it much easier for

Python: Sunfish
chess engine
Jonni Bidwell analyses the innards of a small but perfectly formed chess
engine that bests him with alarming regularity.

L
egend tells of one Sissa ibn Dahir who invented the

game of Chess for an Indian king. So impressed was

that king that he offered Sissa anything he desired as a

reward. Being of a calculating bent, Sissa replied “Then I wish

that one grain of wheat shall be put on the first square of the

chessboard, two on the second, and that the number of

grains shall be doubled until the last square is reached:

 Unicode

generously

provides chess

piece icons

which enhance

the experience

of playing from

the terminal.

Jonni Bidwell

is rumoured to be
a mechanical Turk,
it would explain
the rat-a-tat of
gears as he
produces words in
exchange for
bread and beer.

Our
expert

January 2016 LXF206 89www.techradar.com/pro

Python

Never miss another issue Head to http://bit.ly/LinuxFormat

machines to understand what you mean. If you wish to castle

then just specify that you want to move your king two places

sideways, the machine knows the rules and will move the

relevant rook as well, provided that castling is a legal move at

that stage in the game. Depending on your skills you will win,

lose or draw.

In LXF203 we used PyGame to implement the ancient

board game Gomoku. For this tutorial we’ll see a slightly

different approach. Have a look at the sunfish.py code: the

shebang directive in the first line specifies that sunfish.py

should be run with the Pypy compiler, rather than the

standard Python interpreter. Installation of Pypy is trivial and

will improve Sunfish’s search-performance drastically, but for

our purposes it will be fine to proceed without it. We import

the print_function syntax for backwards compatibility with

Python 2, as well as the needed parts of other modules.

Then we initialise three global variables, which we needn’t

worry about here.

Chairman of the board
Now we begin to describe our chessboard. Its starting state is

stored as a 120-character string, initial , which may seem a

little odd, especially if you remember how nice it was to store

the GoMoku board as a two-dimensional list. Be that as it

may, this representation turns out to be much more efficient.

Before defining initial we specify what will be the indices of

the corner squares using the standard layout, so A1 is the

lower left corner and A8 the lower right etc. We divide the

string into rows of 10 characters, remembering that the

newline \n counts as a single character. The actual board

starts on the third row, where we represent black’s major

pieces with the standard lowercase abbreviations, which we’ll

list below for completeness:

p: Pawn

r: Rook

n: Knight

b: Bishop

q: Queen

 k: King

We have characters padding the beginning (a space) and

the end (\n) of each row so we know that moving a piece

one square vertically will involve adding or subtracting 10

from its index in the string. Dually, moving one square along

the horizontal axis will be done by adding or subtracting 1,

and we know that if the resulting index ends with a 0 (ie is 0

modulo 10) or 9 (ie is 9 modulo 10) then that position is not

on the board. The vertical ranks 1-9 can also be read directly

from the second digit of the index, and the horizontal rows

can be translated linearly from the first. Empty spaces on the

board are represented by periods (.) to avoid confusion with

the empty squares represented by spaces.

Using the numerology (above) we describe unit

movements in the compass directions with appropriately

named variables, and then define the possible movements of

each piece in the dictionary directions . Note that we only

define the movements for white’s material here (ie pawns go

north), their opponents can be figured by a simple

transposition. Note also that we describe all the possible

directions they can move, even though this may not be

permitted by the current position (eg pawns can only move

diagonally when they are taking and can only move two

squares on their first move. We don’t take account of major

pieces moving two or more squares in a straight line ('sliding')

here, rather dealing with that instead in the move generation

loop. Next, we define a lengthy dictionary pst . In a sense this

is the data bank of the engine, it assigns a value to each piece

for a given position on the board, so, eg, knights (N) tend to

be more useful towards the centre of the board, whereas the

queen is valueable anywhere. The king’s values are

This is how

every chess

game starts,

but after just

four moves we

could be in one

of nearly 320

million different

positions.

Sunfish used to be

limited by the lack

of a quiescence

search. This meant

that moves at the

depth limit were

not analysed,

which can lead to

so-called horizon

effects, in that the

engine can’t see

past blunders here.

Thanks to a simple

check, moves

at this limit are

analysed to ensure

they result in

quiescent positions.

Quick
tip

The Mechanical Turk and other chess-playing machines
In 1770 Baron Wolfgang von Kempelen wowed

the Viennese court with ‘The Turk', a clockwork

automaton sat before a chessboard. Kempelen

claimed that his invention would best any human

chess player. Indeed, the Baron and the Turk

travelled around Europe and wowed onlookers

with the latter’s prodigious talent.

The Turk was a hoax, and its talent actually

belonged to the poor person hiding under the

table. However, it inspired people to think more

about chess playing machines, and in 1950

Shannon and Turing both published papers on

the subject. By the 1960s computers were

playing reasonable chess: John McCarthy

(dubbed the father of AI) and Alan Kotok at MIT

developed a program that would best most

beginners. This program, running on an IBM

7090, played a correspondence match via

telegraph against an M-2 machine run by

Alexander Kronrod’s team at ITEP in Moscow.

This was the first machine versus machine

match in history, and the Soviets won 3-1. Their

program evolved into KAISSA, after the goddess

of chess, which became the computer chess

champion in 1974. By the early 80s the chess

community began to speculate that sooner or

later a computer would defeat a world champion.

Indeed, in 1988 IBM’s Deep Thought shared first

place at the US Open, though reigning world

champion Garry Kasparov resoundingly defeated

it the following year. In 1996 Deep Blue stunned

the world by winning its first game against

Kasparov, although the reigning world champion

went on to win the match 4-2. The machine was

upgraded and succeeded in beating Kasparov

the following year, though not without

controversy. Since then computers regularly beat

their inferior meatbag competition, although

their prowess is driven by algorithmic advances.

90 LXF206 January 2016 www.linuxformat.com

Python

Never miss another issue Subscribe to the #1 source for Linux on page 32.

 This is from

a game Paul

Morphy (white)

played against

the Duke of

Brunsick and

Count Isouard

in 1858. It’s

a so-called

zugzwang for

black (to move) –

most moves are

detrimental.

disproportionately high so that the machine knows it can

never be sacrificed.

Now we move on to the chess logic section and subclass

the namedtuple construction to describe a given chess

position. Using this datatype enables us to have a tuple (a

fixed-length list) with named keys rather than numerical

indices. We store the current board arrangement together

with the evaluation score for that position. Then we have four

extra elements to take care of the exceptional moves –

castling and en passant pawn capture. The gen_moves

function iterates over each square on the board and every

possible move for each piece on the board. The loop is

commenced as follows:

 for i, p in enumerate(self.board):

 if not p.isupper(): continue

 for d in directions[p]:

 for j in count(i+d, d):

 q = self.board[j]

 if self.board[j].isspace(): break

The enumerate() function (line 147) is a vital weapon in

any Pythonista’s arsenal, as it generates index-value pairs for

a given list (or string in our case), useful when we are

interested in list items’ positions as well as their content.

Because of the symmetry involved we only consider the

moves of white’s pieces, so we bail out if the relevant piece p

in the string is not uppercase (line 148).

Fortuitously, the .isupper method also returns False for

spaces and periods, so empty squares are efficiently thrown

away early on in the proceedings. The rotate() function

transposes the colours when it’s black’s turn. We look at all

possible directions that the piece can move and then (line

150) extend these moves to account for those pieces allowed

to slide (ie Rooks, Bishops and Queens). Finally, we discard

any move that takes us off the board.

The next part of the function checks if castling is possible:

 if i == A1 and q == ‘K’ and self.wc[0]: yield (j, j-2)

 if i == H1 and q == ‘K’ and self.wc[1]: yield (j,

j+2)

 if q.isupper(): break

Castling rights for both rooks are stored as a booleans in

the list wc , which is part of our Position object. If we are

considering either of white’s corner squares and if white still

has castling rights (so those squares are certainly occupied

by rooks) then we yield the move which moves the king two

spaces left or right. Our gen_moves() is what is an example

of a generator function – it yields results which can be used in

 for or while loops. In our case, we generate a pair of indices

– the pieces position and after the move. Finally, we break if

the destination square is occupied by one of white’s pieces,

since friendly captures aren’t allowed.

A pawn in the game
Next we consider matters peculiar to pawns:

 if p == ‘P’ and d in (N+W, N+E) and q == '.’ and j

not in (self.ep, self.kp): break

 if p == ‘P’ and d in (N, 2*N) and q != '.‘: break

 if p == ‘P’ and d == 2*N and (i < A1+N or self.

board[i+N] != '.‘): break

First, pawns cannot move diagonally into an empty

square, unless an en passant capture can take place.

Next, they can only move forwards (one or two squares, we

check if the latter is allowed in the next line). The i < A1 + N

comparison will return true for any pawn that has moved

beyond the second row. Two-square rights are likewise denied

if there’s a piece in front of the pawn.

The closing stanza of gen_moves() reads:

 yield (i, j)

 if p in ('P’, ‘N’, ‘K'): break

 if q.islower(): break

Having got all the constraints, we can now pass on the

move under consideration, it may yet turn out not to be valid

(eg if it doesn’t alleviate a check situation) but it’s passed the

first level of filtration. Pawns, knights and rooks aren’t allowed

to slide, and those pieces that are have to stop doing so if

they capture a piece (ie land on a lowercase entry in board).

We’ve already discussed the rotate() function. But

impressively the board can be transposed (which results in

the equivalent game with the colours switched and the board

rotated 180 degrees) just by reversing the board string and

switching cases. We must take care of the other parts of our

Installing Xboard and interfacing with Sunfish
There are a number of good chess graphical

user interfaces for Linux, we’re using Xboard as

it’s fairly ubiquitous amongst common distro

repos, but be sure to check out PyChess as well.

Installation will just be a matter of:

$ sudo apt-get install xboard

Now fire up Xboard and select Engine >Load

New 1st Engine. Enter Sunfish in the Nickname

field, for the Engine Directory use /home/user/

Chess (replacing user with your username –

Xboard doesn’t seem to understand the ~

shorthand) and for the Engine Command use

 python /home/user/Chess/xboard.py . Leave all

the other settings as they are and select ‘OK’.

The default XBoard setup gives the human

player white pieces and if all has gone well the

window title should now read ‘Sunfish’. Now you

have your formidable opponent.

If you click one of your chess pieces then

Xboard generously shows you where the piece

can move to, which is not just useful for players

who are starting out.

GNU Chess will be equally as trivial to install,

and Xboard already includes an Engine List entry

for it. You can load GNU Chess as the second

engine, and then select Two Machines from the

Mode menu. Battle ought immediately to

commence, with GNU Chess even showing

you some of its crazy thought process in the

status bar.

January 2016 LXF206 91www.techradar.com/pro

Python

 Deep Blue

v Kasparov

(1997 - Round

2). Kasparov

resigned after

the machine

shocked him

with this move,

throwing his

performance for

the rest of the

match. It turns

out he could have

forced a draw

from here, d’oh.

object though. Specifically, we need the negative of the

position’s score, since we are still in opposition to the previous

player, even though we’re pretending to have adopted their

colour. Castling rights are already separated, so they need no

further treatment. The en passant positions are easily figured

out by counting backwards from the end of the board.

The function move() deals with actually moving the

pieces, when that time comes. We first get our beginning and

end positions i and j and the occupants of those squares p

and q . Line 178 defines a shorthand (lambda) function which

replaces the piece at position i with the piece we are moving.

We get and reset required class variables, to save us from

typing self many times, and update the score by calling the

valuation function. In line 184 we place the piece in its new

position using our lambda function and then remove the

piece from its original position with a further call.

Beginning at line 187, we update the castling rights: if a

rook is moved then castling on that side is no longer allowed,

the value for the other, stationary, rook is preserved. Castling

itself is instigated by the king:

 if p == ‘K':

 wc = (False, False)

 if abs(j-i) == 2:

 kp = (i+j)//2

 board = put(board, A1 if j < i else H1, '.‘)

 board = put(board, kp, ‘R')

Once he has been moved castling rights are cancelled,

regardless of whether the player intends to castle or not.

If they do then they are moving the king two places sideways,

with the rook on that side ending up on the square

horizontally adjacent to him. This is calculated by rounding

down the midpoint of positions i and j . We use some more

shorthand to delete the rook’s old position and the final line

puts it in its new one.

Manipulating the pawns
Next we deal with pawns. Sunfish doesn’t do minor

promotion, ie pawns are only promoted to queens if they

reach row 8 (line 201). If a pawn moves two squares then we

keep track of the square behind, in case an en passant

capture is possible. If the pawn makes an en passant capture

then the appropriate square is obliterated. We return a new

Position object, remembering to rotate it to account for the

next player’s point of view.

The valuation function value() calculates the relative

value of a given move. We start by calculating the difference

between the value piece’s positions before and after the

move. If the player has captured a piece then that piece’s

value at its capture position is added. If castling results in the

king being checked, then the value will go sky high

(precluding that move). If castling did take place, then the

value needs to be adjusted according to the rook’s new

position. Finally, we account for pawn promotion and en

passant capture.

We’ll give an overview of the search logic section at the

end, but it’s worth having a brief look at the user interface

section (which starts at line 338). The parse() function

converts from a two digit co-ordinate string (such as a4) to

the relevant list index (61 in this case). The render() function

does the opposite. The print_pos() function nicely prints the

board, complete with Unicode characters in lieu of actual

graphics and labelled axes for the ranks and files.

The final function main() sets up the initial layout and

defines the main game loop. Each iteration starts by

displaying the board and asking for a move. We use the

regular expression ‘([a-h][1-8])'*2 (line 369) to check that the

move is of the correct form, ie a pair of co-ordinates. If it is,

and that move is legal for the current position (it’s generated

by pos.gen_moves()) then we proceed, otherwise we ask

again. Then we reverse the board for the computers turn and

use the engine’s search function to find the best move. If this

move results in a checkmate, or fails to resolve a checkmate

then the game is done, otherwise the move is printed and the

board updated.

The code we’ve discussed so far can easily be adapted to

a two-player game like we saw in the Gomoku tutorial.

However, what is much more interesting is the code that

figures out the machine’s next move. Amazingly, the engine

itself (ignoring the lengthy pst dictionary and all the code

we’ve already covered) occupies less than a hundred lines.

Sunfish is based on the MTD(f) minimax search algorithm

introduced in 1994, adapted to use binary trees. MTD uses

so-called alpha-beta pruning for evaluating the game tree,

so we build up a tree of possible moves and discard any which

we can show lead to positions that are provably worse off

than others we have evaluated. A technique called iterative

deepening is used to temper the depth of the search, so that

we don’t go too far down one particular rabbit hole.

Calculating a move begins with a call to the search()

function. We limit both the depth (line 305) and the breadth

(initially using the NODES_SEARCHED variable) of the

search to stop things getting out of control. The real magic

happens in the bound() function.

The move tree is stored in the ordered dictionary tp ,

which is indexed by our position string pos and so previously

calculated positions can be looked up efficiently. When we

come to analysing all possible moves (line 270), we sort the

generated positions in reverse order by their value, which

ensures copacetic positions get the attention they deserve.

We use bound() recursively to construct a game tree from

each possible move, adding appropriate moves to tp (line

293). Alas, the end of the page approaches so here is where

we sign off.

You’ll find some helpful comments to aid your

understanding of the engine code, so why not experiment by

tweaking parameters and seeing what breaks? If you want to

learn more about the intricacies of programming chess, make

sure and check out the Chess Programming wiki

(https://chessprogramming.wikispaces.com), it will prove

a valuable resource. LXF

