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Quantization is the state of the art approach to efficiently storing and search-

ing large high-dimensional datasets. Broder’97 [7] introduced the idea of

Minwise Hashing (MinHash) for quantizing or sketching large sets or binary

strings into a small number of values and provided a way to reconstruct the

overlap or Jaccard Similarity between two sets sketched this way.

In this paper, we propose a new estimator for MinHash in the case where

the database is quantized, but the query is not. By computing the similarity

between a set and a MinHash sketch directly, rather than first also sketching

the query, we increase precision and improve recall.

We take a principled approach based on maximum likelihood (MLE)

with strong theoretical guarantees. Experimental results show an improved

recall@10 corresponding to 10-30% extraMinHash values. Finally, we suggest

a third very simple estimator, which is as fast as the classical MinHash

estimator while often more precise than the MLE.

Our methods concern only the query side of search and can be used with

any existing MinHashed database without changes to the data.
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1 INTRODUCTION
Set data (or sparse binary or categorical data) is a staple of data

science. Efficient search and joins of such data is used in document

deduplication [8], association rule learning [30], and for searching

genomes and metagenomes in Bioinformatics [24].

Quantization is the act of representing data from a large or con-

tinuous space by a smaller set of discrete finite values. Also known

as sketching or hashing, this often allows storing very large datasets

on a single computer, or on fewer servers than otherwise needed. At

the same time, because the compression and increases data locality,

it has become a key component to processing such data efficiently.

MinHash sketches are randomized quantizations of sets (or equi-

valently 0/1 vectors). The idea is to pick K random functions hi :
U → [0, 1] and define the sketch of X ⊆ U to be

q(x) = (argmin

x ∈X
h1(x), . . . , argmin

x ∈X
hK (x)).
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Fig. 1. Figure by Jegou et al. [18] illustrating the difference between sym-
metric and asymmetric estimation, as used in Euclidean Nearest Neighbour
Search. The distance q(y) − x is a better approximation of y − x than
q(y) − q(x ). In the set setting, when q is MinHash, it is not clear what it
would even mean to compute q(y) − x?

After early uses in statistics [6] and correlation estimation [15], the

term was coined by Broder [7, 8] in the context of detecting near-

duplicate web pages. The sketch is known to be near-optimal [25]

for estimating set similarity on a given space budget.

A typical scenario is that we want to store some sets Y1, . . . , so
we compute the MinHash for each of them, with perhaps K = 30.

(See fig. 2 for an example quantized database.) Now, given a new

set, X , we quantize it and estimate the similarity with each Yi by

∥q(X ) − q(Yi )∥1/K , which has expectation
|X∩Yi |
|X∪Yi |

, known as the

Jaccard similarity between X and Yi . Since q(X ) only has to be

computed once, and each subsequent estimate takes time O(K),
rather than |X ∩ Y | if we were to compute the Jaccard similarity

directly. Thus, the quantized database can be searched substantially

faster than the direct approach. Sketching can also be combined

with space partitions to produce state of the art performing set

similarity search [10], but in this paper, we focus on quantization

only.

Quantization is also central in state of the art Euclidean nearest

neighbour search and Maximum Inner Product Search (MIPS) [16].

In their seminal paper, Jegou et al. [18] argued for the application

of asymmetric distance estimation as a way to improve search ac-

curacy and speed in this context. Instead of sketching the query

and computing the similarity “in sketch-space”, ∥q(x) − q(y)∥2, one
can use the full information of the query and compute ∥x − q(y)∥2
reducing the space requirement for equal recall by up to a factor of

four. See fig. 1 for visualization.

While asymmetric estimation is a natural idea for Euclidean dis-

tance, it is less clear how it might apply in the context of set search

and MinHash quantization. Somehow we have to compute a sim-

ilarity value, given X and q(Y ) better than ∥q(X ) − q(Y )∥1/K . An
indication that this may be possible is the case where the MinHash
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value of Y is not equal to the MinHash of X , but is perhaps equal to

the second or third smallest value—that ought to count as evidence

towards the sets being similar, even if the classical MinHash sketch

would count it as evidence to the opposite.

1.1 Results
In this paper, we take a principled approach to this problem.

(1) We derive an estimator based on maximum likelihood. We

analyse its variance, which we find to be 28% lower than the

classical sketch-space estimator. (See figures 4 and 6.) For

small similarities, we reduce the variance by a factor
|Y |

|X |+ |Y |
showing particularly good results when the (known) set X is

much larger than the unknown set Y .
(2) We investigate relaxations and numerical methods, trading

precision for speed of estimation. (See tables 1 and 2.) A

particularly good choice is dubbed the “Minner Estimator”

since it is based on counting the number of elements in X
that hash to a value smaller than the minimum hash value of

Y .
(3) We run experiments on several large set datasets from [21],

such as the Netflix dataset originally from KDD-Cup 2007.

We show a reduction in the MinHash values needed of up to

30% for a given recall@10.

While our focus is mainly on applications characterized as “one-

many”, such as search, many applications characterized as “many-

many” are trivially reduced ton times one-many.We thus also obtain

better performance for important tasks such as duplicate detection

and nearest neighbour graph construction.

A non-goal of the paper is to make the fastest possible implement-

ation of set similarity search. For this reason, we do not include

experiments measuring the runtime of our estimators. To be compet-

itive in raw running time requires a serious engineering task with

papers like [16] including 33,812 lines of optimized C and assembly

code by many authors. In section 4 we discuss hardware-level op-

timizations of this kind.

1.1.1 LowerK for a given Variance and Recall. Technically, the most

difficult part is in the precise variance analysis of the maximum

likelihood estimator. Since our estimators are unbiased, the variance

corresponds to the mean squared error when estimating similarity

for pairs of sets. A factor two loss in variance would need to be

counterbalanced by a factor two increase in the number of MinHash

values, significantly reducing practical performance. One may ask

other questions, such as the necessary K to obtain high probability

confidence bounds, but since we work with independent values, this

is mostly trivial.

An important “downstream” measure is the recall on real datasets.

This determines how large a K is needed in order to return the

true nearest neighbour when scanning a database with estimated

similarities. The exact value depends heavily on the “difficulty” of

the dataset and varies between 20 and more than 500 for a 90%

recall@10 in our experiments. In every case our new method is

able to obtain a significantly higher recall when given the same

information as is available to the classical MinHash estimator.

MinHashed Database

id Size, ny r1 r2 r3 . . . rK
0 254 4594 4439 9295 . . . 658

1 107 66 3675 457 . . . 6805

2 3322 342 1173 11 . . . 409

3 501 9928 226 603 . . . 2784

Fig. 2. In this example MinHased Database four sets have been quantized
into K values each. Instead of storing the value of h : [u] → [0, 1] as a real
number we have used the equivalent representation of ranks, in which h is a
random bijection h : [u] → [u]. This allows for more efficient compression
of the MinHash values.

Other papers have focused on compressing the MinHash sketch

itself, a famous algorithm being the [14]. In general O(log logu +
K logK) bits suffice for similarity estimation [11], improving over

storing the ranks directly with ⌈K log
2
u⌉ bits. Our paper differs by

focusing on reducing K , which can then be combined with those

results for even greater compression. ReducingK also has the benefit

of increasing processing speed, something not gained by simply

storing the same sketch in less space.

2 BACKGROUND AND RELATED WORK
Estimators for MinHash, other than the “classic” one referred to

in this paper, have been derived for various purposes. Cohen [11]

made improved estimators for graph algorithms, and Ertl [12] de-

rived better estimators for Flajolet’s HyperLogLog [15] variation of

MinHash. The extremely successful Mash [24] software in Bioin-

formatics works by a Bayesian estimator of sketch similarity that

takes into account the process of ‘mer’-tokenization that created

the data. However, for the simple task of estimating similarities in

the many-one setting, there appears to have been no prior work.

2.1 Quantization and Search
Since Jegou et al. 2010 [18] quantization has been a critical part of

fast search data structures. In particular, the approach of Product

Quantization, which sketches vectors in Rd in a fast, data-sensitive

way. Recently Guo et al. [16] broke all records [5] for Maximum

Inner Product Search (MIPS) and Cosine Similarity, based on a new

Product Quantization technique sensitive to those measures. The

secret to these amazing results is the use of Single Instruction, Mul-

tiple Data (SIMD) instructions onmodern CPUs, which can consume

large batches of quantized data per instruction.

In comparison, the landscape for set similarity search is less de-

veloped. Recent theoretical works [3, 9] have discovered the optimal

randomized space partitions to use and replaced MinHash after 20

years as the best-known approach. However, the state of the art

implementations [10] still use MinHash sketching for faster similar-

ity estimation among points in the space region. In contrast to the

Euclidean case, they have thus far had to the classical symmetric

estimator.

2.2 Alternative sketches
There are a number of other sketches for estimating set similarity

that we do not study in this paper. In general, any sketch that allows
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cardinality estimation and taking the union of two sketches can be

used to estimate the set overlap and similarity. Most estimators for

these sketches are of the symmetric type, so it would be interesting

to study whether some of them have good asymmetric estimators

as well.

HyperLogLog [14], HyperMinHash [29], MaxLogHash [28], SetS-

ketch [13] and b-Bit MinHash [19] focus on compressing coordin-

ated samples, however they don’t try to get extra information per
sample as we do in this paper.

MinHash itself has variations, such as bottom-k MinHash and

k-partition MinHash. Cohen [11] gives a nice survey of those as well

as many more variations and applications. Thorup [27] analyses

bottom-k in a setting superficially similar to ours: For two sets

Y ⊆ X and S a bottom-k sketch of X , he bounds the deviation of

|S ∩Y from its expectation. That is, he compares a sketched set with

an unsketched set. However, since Y is a subset of X it turns out,

that for bottom-k the intersection S ∩ Y is the same as S ∩ S(Y ), so
he is still in the classical “symmetric” setting.

3 THE ESTIMATORS
In this section, we develop a maximum likelihood estimator (MLE)

for MinHash, analyse the variance and compare it to the classical

MinHash estimator. Such an estimator has the lowest possible vari-

ance asymptotically as K → ∞, but can be slow to evaluate. We

thus proceed to develop a third estimator that is as fast as the clas-

sical estimator while experimentally nearly on par with the MLE

in variance. Using numerical methods we finally show how to get

the full power of the MLE in time linear in the number of MinHash

values.

A quick note on notation: If u ∈ N, we use [u] = {0, . . . ,u − 1}
to indicate the set of numbers up to u. If P is a proposition, we use

[P] to indicate the variable that is 1 if P and 0 if not P .

3.1 Maximum Likelihood Estimator
In the classical analysis of MinHash (and consistent hashing) we

imagine two sets X ,Y ⊆ [u] being given, and then compute the

probability that a random hash function h : [u] → [0, 1] will pick its
smallest value in the intersection X ∩ Y . This turns out to depend

only on the size of X ∩ Y , and so it doesn’t matter that we don’t

actually know the sets X and Y while making the estimates.

To improve upon the classical estimator we have to use the fact

that we in fact know h at the time of making the estimate. However,

if we just take h as a given in the analysis, there won’t be anything

random left, and the analysis will end up depending on the values of

Y . In case of maximum likelihood estimation the analysis is closely

tied to the actual algorithm, so depending on Y , which we don’t

know, is not a good idea.

Our compromise is to assume the values of h on X are known,

but not the values of h outside of X . This results in an analysis (and

an estimator) that uses the information given to the algorithm about

X , but doesn’t use any information about Y , just as in the original

analysis. Note that this model of analysis is only used for deriving

the MLE. When, in section 3.2, we analyse the variance, we will

assume h is all unknown and get an expression only in terms of |X |,
|Y | and |X ∩ Y |.

Fig. 3. Estimated vs. True Jaccard similarity on a random query in the Netflix
dataset with 5,000 pairs, using K = 31. The classical estimator can only
take K + 1 different values which leads to some visual banding. Our new
estimators are freer and overall more concentrated around the diagonal.

We discuss one final model. Recall that we can equivalently as-

sume h : [u] → [u]. We call the output of this h the “rank”, since

it describes the placement of the hash value in the order of hash

values of [u]. Let X = {h(x) : x ∈ X } and Y = {h(y) : y ∈ Y }.
Then knowing h on X corresponds to knowing X, but sampling Y

uniformly at random. This is a useful model combinatorially since

it completely removes h from the analysis.
1

Given a random variable and a statistical model, “estimation” is

the task of inferring the parameters to the model based on the ob-

servation. A maximum likelihood estimator chooses the parameters

that maximize the probability that the model generates the partic-

ular observed value. That is, if the observation is equal to ρ with

probability p(ρ; θ ), θ is unknown, once we observe ρ, we estimate

θ as the argmaxp(ρ; θ ).
In our case we get the following model discussed above: Given

a set X of size nx and values ny and v , we sample a set Y with

|Y| = ny and v = |X ∩ Y|. We let r be some MinHash value the

estimator may observe. The log-likelihood of the observation is

then:

ℓ(r ;v) = log Pr

Y
[minY = r ],

in other words, the probability that a set Y sampled with overlap v
with X had this particular value as its smallest.

We note that if we do not consider ny to be known, we can let

the model have two parameters (rather than just v) and estimate

both of them. This could be done in a Bayesian way by for example

counting the frequency of set sizes in the database and build this

into the model. However, in the database model, not much space is

saved, since the set size is only one value out of K .

1
It also suggests a future Bayesian estimator in which Y is not assumed to be uniformly

distributed, but follow some prior distribution, such as the “skewed data” model of [22].
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We define nx = |X| and the observed rank R = minY. We also

definem = m(r ) =
∑
x ∈X[x < r ] to be the number of values in X

smaller than r .

Proposition 1.

Pr

Y
[R = r ] =


(nx −m−1v−1 )(

u−r−(nx −m)
ny−v )

(nxv )(
u−nx
ny−v)

if r ∈ X

(nx −mv )(
u−r−1−(nx −m)

ny−v−1 )

(nxv )(
u−nx
ny−v)

if r < X

Note we take

(n
k
)
= 0 for n < k . In particular, this may happen if

nx −m < v . The probability of R = r in this case is 0, since nx −m
is the number of x-ranks at least r , and all of X ∩Y must have rank

at least r .

Proof. Not considering R there are

(nx
v
) (u−nx
ny−v

)
ways to choose

Y such that |Y| = ny and |X ∩ Y| = v . We proceed by cases..

First, consider the case r ∈ X. Then the remaining v − 1 overlap-
ping elements have to be chosen from {x ∈ X : x > r }. by definition
ofm there are nx −m − 1 such values. The remaining ny −v non-

overlapping elements have to be chosen from {x < X : x > r }.
There are u − r elements in [u] greater than r , and of those nx −m
are in X. Thus the number of ways to choose Y with r ∈ X is(nx−m−1

v−1
) (u−r−(nx−m)

ny−v
)
.

The case r < X follows by similar arguments. □

Using proposition 1 we can write the log-likelihood in the follow-

ing concise manner:

ℓ(r ;v) = log

(nx−m−[r ∈X]
v−[r ∈X]

) (u−r−[r<X]−(nx−m)
ny−v−[r<X]

)(nx
v
) (u−nx
ny−v

) . (1)

If we observe K > 1 values r1, r2, . . . , rK we get, by independence

of the MinHash functions, a log-likelihood of

ℓ(r1;v) + ℓ(r2;v) + · · · + ℓ(rK ;v).

It is trivial (if not efficient) to enumerate all v ∈ [min{nx ,ny } + 1]
and compute which one has the highest log-likelihood.

We finally define our estimators for intersection (Tv ) and Jaccard

similarity (Tj ).

Definition 1 (Maximum Likelihood Estimator (MLE)). The
maximum likelihood estimators for respectively set overlap and Jac-
card similarity are

Tv (r1, . . . , rK ) = argmax

v ∈[min{nx ,ny }+1]
ℓ(r1;v) + ℓ(r2;v) + · · · + ℓ(rK ;v).

Tj (r1, . . . , rK ) =
Tv (r1, . . . , rK )

nx + ny −Tv (r1, . . . , rK )
.

The re-parametrizing the estimator to Jaccard follows from the

two quantities being monotone in each other. Hence ifTv maximizes

the likelihood of v , Tj will maximize the likelihood of the Jaccard

similarity.

������

Classic MinHash

MLE, Worst Case x/y Ratio
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Fig. 4. Variance of maximum likelihood estimator based on Fischer Informa-
tion bound. For j close to 0 or 1 the worst case MLE bound is asymptotically
equal to the Classical bound, whereas for j ≈ 0.21 has only ≈ 62% of the
variance. See fig. 5 for a corresponding experimental test.

3.2 Analysis
We want to analyse the MLE in the model where h is unknown. In

this setting, we have for theMinHash estimatorE[T ] = 1

K
∑
i Pr[qi (X ) =

qi (Y )] = j and

V [T ] =
E[(T − j)2]

K
=

E[T 2] − j2

K
=

Pr[T = 1] − j2

K
=

j(1 − j)

K
.

(2)

The expectation and variance thus depend only on the similarity

and not on the specifics of X and Y .
The main work of this section will be proving the following

proportion:

Proposition 2. As K →∞, the variance of the MLE converges to

j(1 + j)3ny (ny − jnx )(nx − jny )

(nx + ny )
(
(1 + j)2nxny − j2(nx + ny )2

)
K

(3)

over the randomness of the random hash function.

The bound is a little complicated by the fact that it includes the

sizes of the sets nx and ny . We note that the bound is convex in the

ratio ny/nx , giving lower variances than eq. (2) for nx << ny or

nx >> ny . Figure 4 shows eq. (3) when the ratio is taken to be worst
possible as a function of j, as well as when it is taken to be 1. In the

symmetric case nx = ny the asymptotic variance reduces to

j(1 − j)

K

(1 + j)3

2(1 + 3j)
,

which is easy to compare with eq. (2) since
(1+j)3
2(1+3j) ∈ [

1

2
, 1] for all

j ∈ [0, 1]. For nx /ny , 1 the Jaccard similarity is bounded above

by

min{nx ,ny }
max{nx ,ny }

which the MLE exploits and discards those higher

values from consideration, resulting in 0 variance in that range. For

small j eq. (3) is
ny j

nx+ny −O(j
2) compared with j −O(j2) for eq. (2).

It makes sense that the variance is lower when |X | is big compared

to |Y |, since we are given X , but don’t know Y .
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The global risk of an estimator is defined as the worst possible

variance over the parameter space. In the case of the classical Min-

Hash estimator, the global risk is 1/(4K) at j = 1/2. We can also

compute the global risk of the MLE, which is 0.1788/K , 28.5% less

than the classical estimator.

Recall the model of the analysis is the same as for classical Min-

Hash: Given X and Y we sample a random hash function h : [u] →
[u]. We compute r = miny∈Y h(y) andm =

∑
x ∈X [h(x) < r ].

Proof of proposition 2. We first find the variance for the MLE

for v and then show how to re-parametrize it to use the Jaccard

similarity.

Using Stirling’s approximation logn! = n logn −n +O(logn), we
rewrite the log-likelihood eq. (1) as

ℓ(r ;v) = (nx −m − [r ∈ X] + 1)H (
v−[r ∈X]

nx−m−[r ∈X]+1
) − (nx + 1)H (

v
nx+1 )

+ (u − r − [r < X] − nx +m + 1)H (
ny−v−[r<X]

u−r−[r<X]−nx+m+1
)

− (u − nx + 1)H (
ny−v

u−nx+1 ) +O(logu),

where H (p) = p log 1

p + (1 − p) log
1

1−p is entropy function.

Standard results [26] on maximum likelihood estimators say that

the variance converges to 1/I (v) where

I (v) = E

[
−
d2

dv2
ℓ(r ;v)

]
is known as the Fischer information.

2

We can now evaluate the first two derivatives:

d

dv
ℓ(r ;v) = log

©«
(1 − 1

ny−v+1 )
[r<X](1 − m

nx−v+1 )

(1 − 1

v+1 )
[r ∈X](1 − r−m

u−nx−ny+v+1 )

ª®¬ +O(1/u) (4)
d2

dv2
ℓ(r ;v) = [r < X]( 1

ny−v+1 −
1

ny−v ) + (
1

nx−v+1 −
1

nx−v−m+1 )

+ [r ∈ X]( 1

v+1 −
1

v ) + (
1

u−nx−ny+v+1 −
1

u−nx−ny+v−r+m+1 )

+O(1/u2). (5)

We now have three terms to bound: E[r ∈ X], 1

nx−v−m+1 and

1

u−nx−ny+v−r+m+1 . Since any element of Y has even chance of

becoming the smallest under h, we have

E[r ∈ X] = Pr[r ∈ X] =
v

ny
.

When considering the distribution of r andm, we will assume

the values of h have exponential distribution, Exp(1), instead of

uniform over [0, 1]. This corresponds to using log 1/h(x) instead of

h(x) which is a strictly monotone transformation and so equivalent

in terms of comparing hash values. Let y∗ = argminy∈Y h(y) and

h∗ = h(y∗). (Note this is different from r , which is the rank.) We

2
This is a bit more tricky than it seems, since the standard proof of this fact [26]

uses that the expectation is taken over the same probability space as ℓ is defined.

However, one can check that the key step in which that is used is to show E[f ′′/f ] =∫
(f ′′(x )/f (x ))f (x )dx =

∫
f ′′(dx ) = (

∫
f (x )dx )′′ = 0, where f = exp(ℓ) is the

probability distribution. Since Eh [f ′′/f ] = Eh [Eh
|X
f ′′/f ] = Eh [0] = 0 we can run

the entire proof using Eh rather than Eh
|X

and get the same result. Thus it suffices to

thus focus on bounding Eh [− d2

dv2
ℓ(r ;v)].

then have that Then h∗ ∼ Exp(y) by the stability of minimums of

exponentially distributed random variables.

We can now see m =
∑
x ∈X \Y [h(x) < h∗] as having binomial

distribution B(nx −v,p), conditioning on h∗, where p = Pr[h(x) ≤
h∗] = 1− exp(−h∗) by the CDF for the exponential distribution. (We

only sum over X \Y rather than all of X since no value in X ∩Y can

be smaller than h∗ by definition.) Because of the binomial revision

1

n−i+1
(n
i
)
= 1

n+1
(n+1
i
)
we can evaluate

Em
[

1

nx−v−m+1

]
= Eh∗

[
1−pnx −v+1

(1−p)(nx−v+1)

]
= 1

ny−1

(
ny

nx−v+1 −
1

(nx +ny−vny )

)
,

where the second equality follows by an integral over the Beta

function. Note that the expectation is defined for all ny ≥ 0 by

limits.
3

We can similarly note that r −m is the number of values in the

complement of X ∪ Y , and so has binomial distribution B(u − nx −
ny +v,p). By the same arguments as above, we get that

E
[

1

u−nx−ny−v−(r−m)+1

]
= 1

ny−1

(
ny

u−nx−ny+v+1 −
1

(u−nx −ny+vy )

)
.

Combining all the terms of eq. (5), and assuming nx and ny suffi-

ciently large we get the simple result

I (v) =
1

ny (nx −v)
+

1

v(ny −v)
+O

(
1

min{nx ,ny }

)
.

We can now use the re-parametrization formula for Fischer Inform-

ation to compute

Ij (j) = v
′(j)2Iv (v(j)),

wherev(j) = j
1+j (x +y). By the previously stated facts on maximum

likelihood estimators, this proves the proposition. □

We have succeeded in analysing the variance of the maximum

likelihood estimator. There are more questions to ask, such as how

large K must be to start seeing convergence to the stated bound. We

give some experimental evidence for these questions in section 5.2.

3.3 Minner Estimator
In the previous sections, we derived and analysed a Jaccard similar-

ity estimator based on maximum likelihood. The estimator has to

evaluate the log-likelihood function, ℓ, for allv ∈ [min{nx ,ny }+ 1],
which means it takes time at least Ω(K min{nx ,ny }) per database
point. In this section we investigate numerical methods for speed-

ing up the MLE and suggests a new, fast estimator which can be

computed as fast as the classical MinHash estimator.

We call this the “Minner Estimator” since it is based on counting

the number of elements in X that hash to a value smaller than the

minimum hash value of Y . The expected number of such values is

(|X \ Y |)/(|Y | + 1) since each element of X \ Y has a probability

1/(|Y |+1) of being smaller than all inY , and the values inX∩Y can’t

by definition be. IfM is the Minner count, then |X | −M(|Y |+1) is an
unbiased estimator for the intersection size v = |X ∩ Y |. However,

3
In particular at y = 1 it equals Hnx −v+1/(nx − v + 1), where Hn is the harmonic

number.
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Fig. 5. Measured variance of estimators, over 100,000 repetitions at |X | =
|Y | = K = 30 and u = 500. The MLE has already almost converged to
fig. 4. The Minner Estimator is seen to be particularly good for low Jaccard
similarities, which may be why it works so well on the practical datasets
tested in section 5 which tend to have similarities concentrated in the
[0, 0.2] range, as seen in fig. 3.

we will derive a much better estimator based on considerations

about the MLE from the previous section.

The starting point of this derivation is the continuous derivative

log-likelihood eq. (4), which we would like to solve = 0 for v . If we
apply the approximation log(1 − ε) ≈ −ε , we get

d

dv
ℓ(r ;v) ≈ −

[y∗ < X ]

ny −v
−

m

nx −v
+
[y∗ ∈ X ]

v
+

r −m

u − nx − ny +v
.

This is a convenient form since it is linear in the variables, [y∗ ∈ X ],
m and r . As we observe multiply ri values, we can define R =

∑
i ri ,

M =
∑
imi and C =

∑
i [y
∗
i ∈ X ]. This gives us a single equation to

solve∑
i

d

dv
ℓ(ri ;v) ≈ −

K −C

ny −v
−

M

nx −v
+
C

v
+

R −M

u − nx − ny +v
= 0. (6)

This equation can be rewritten as a degree three polynomial and

solved by standard methods. The time complexity has thus been

decreased from Ω(K min{nx ,ny }) to O(K) plus the time it takes to

find the polynomial roots.

However, solving a polynomial for every point in the database is

hardly as fast as the classical MinHash estimator.

However, we would like a simpler estimator still. In set data, u

is normally very large, so we will approximate
R−M

u−nx−ny+v ≈ 0. If

we assume ny >> v we may approximate
K−C
ny−v ≈ 0 we get the

simple solution to eq. (6), v = Cnx
C+M . Alternatively, if nx >> v we

approximate
M

nx−v ≈ 0, we get v =
Cny
K . We then combine the two

approximations into the following estimator:

Definition 2 (Minner Estimator).

Tv (r ) = min

{
Cnx
C +M

,
Cny

K

}
.

The resulting value is clearly always in the acceptable range

[0,min{nx ,ny }] since C ≤ C +M and C ≤ K . To estimate Jaccard

we take Tj (r ) = v/(nx + ny − v). As before we can compute C
andM in O(K) time per database point, and now we have replaced

the finalization of finding the roots of a polynomial with a simple

division.

While E[
Cny
K ] = v is nice and unbiased (for estimating v), the

combined estimator is not necessarily so. Using the arguments from

the previous analysis section, we find that for a single observation,
4

E[
cnx
c +m

] =
vnx
y

E[
1

1 +m
] =

vnx
nx −v + 1

(Hnx+ny−v − Hny−1)

≈
vnx

nx −v + 1
log

nx + ny −v

ny − 1
, (7)

where Hn is the nth Harmonic Number. If we let nx = ny = n →∞
we get

(7) =
2j

1 − j
log

2

1 + j
,

a quantity sandwiched between the Jaccard similarity, j, and the

Sørensen–Dice coefficient,
2j
1+j . While not unbiased, this is at least

monotone in j (respectively v).
Experimentally, the actual Minner estimator seems to converge to

j for larger K and j not too large. That is, the estimator which uses

the sumsC andM , rather than taking the mean of
cinx
ci+mi

, and which

makes the minimum with Cny/K . For larger Jaccard similarities

Minner seems to slightly underestimate Jaccard, just as we see on

the variance get worse as j → 1 in fig. 5.

We finally present a numerical way to combine the speed of the

Minner estimator with the consistency of the MLE. The idea is a

common one in MLE design, which is to apply Newton’s method to

the problem of solving
d
dv ℓ(r ;v) = 0.

5
TomaintainO(K) complexity

per database point we apply Newton’s method to the approximate

derivative equation eq. (6), which provides the second derivative is

still linear in C , R andM :∑
i

d2

dv2
ℓ(ri ;v) ≈

K −C

(ny −v)2
+

M

(nx −v)2
+
C

v2
+

R −M

(u − nx − ny +v)2
.

Newton’s method now proceeds with iterationsvi+1 = vi −
ℓ′(r ;vi )
ℓ′′(r ;vi )

.

This concludes the derivation of the Minner estimator with New-

ton refinement. In the next section, we give pseudo-code matching

what was used to perform our experiments on real-world data.

4 IMPLEMENTATION DETAILS
While the algorithm is simple conceptually, there are a few tricks to

making it run as fast as the classical MinHash sketch.
6

In algorithm 1 we show how one may use our estimator to do

a fast scan through a database. We assume Di , j ∈ [0, 1] stores the

minimum hash value of Yi under hash function hj . It is perhaps
more typical to haveDi , j store the argminy∈Yi h(y), but in that case

4
We were not able to analyse the case where C and M are the sum of multiple ci and
mi values, nor the effect of combining the two estimators using the minimum.

5
People sometimes use Newton’s method with the expected Hessian instead of the

actual second derivative [20], however, in our case, we’ll be able to efficiently compute

it exactly.

6
We don’t strive to be faster than the classical estimator for a fixed K , but for a given

recall we can be faster, since our K can be smaller.
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Algorithm1Given a queryX ⊆ [u] and a databaseD ∈ [0, 1]n×K of

sketches of sets Y1, · · · ⊆ [u], the algorithm estimates the similarity

with each Yi .

1: for j = 1 to K do
2: Hj ← sorted({hj (x) : x ∈ X })

3: Initialize a max-heap.

4: for i = 1 to n do
5: C,M,R ← 0, 0, 0

6: for i = 1 to K do
7: R ← R + Di , j
8: C ← C + [Di , j ∈ Hj ] ▷ Done by single table lookup

9: M ← M +
∑
r ∈Hj [r < Di , j ]

10: y ← |Yi | ▷ Assuming the set sizes are stored

11: v ← min{
C |X |
C+M ,

Cy
K } ▷ Minner estimator

12: for i = 1 to Newtons do ▷ Optional refinement

13: ν ←
R/u+C/(v+1)−(K−C)/(y−v+1)−M/( |X |−v+1)
C/(v+1)2+(K−C)/(y−v+1)2+M/( |X |−v+1)2

14: v ← min{max{0,v}, |X |,y}

15: j ← v/(|X | + y −v) ▷ If Jaccard similarity is required.

16: Push (j, i) to the max-heap if big enough.

one can simply compute h(Di , j ) at runtime, which is usually a very

cheap function. The MinHash survey of Cohen [11] discusses many

very efficient ways of storing MinHash values.

In algorithm 1 we start by hashing each element of X under the

K hash functions. We sort the resulting values, to be able to perform

line 8 and line 9 more efficiently. These lines respectively check if a

given Y hash-value is also in X , and counts how many hash-values

from X are smaller than the Y hash-value.

There are many ways to perform these tasks. If the range of h
is small, say under a million, we can precompute tables. For large

ranges, we can use that theHj ’s are sorted and binary search, which

works for both tasks. In practice, if |Y | is not too much bigger than

|X |, a linear scan ofHj , will yield the right position in constant time.

One can also use one of a plethora of fast prefix sum data structures,

which are particularly simple since the values of Hj are uniformly

random.

Ideally, we would like each value Di , j to take up just 4 bits. If

so, one can use the “shuffle” SIMD instruction to perform 16 or

more table lookups in a single instruction. This method, common

in Product Quantization implementations [4], has the potential to

make our estimators as fast as the classical one, even per MinHash

value, since the shuffle table fits in registers.

The reduction to 4 bits is possible because the ranks are heavily

concentrated around ny/u, and so have much lower entropy than

the direct log
2
u. Using rounding to an exponential set of values,

like {1, 2, 4, . . . } corresponds to storing just the length of the rank,

and provides a good approximation. Another approach is the b-bit
Minwise Hashing [19] technique, which stores only the last b bits

of the rank.

5 EXPERIMENTS
In this section, we show that our proposed estimators lead to im-

proved performance on maximum Jaccard similarity search on real

datasets. All code is available at [2], implemented in Python with

critical parts written in Cython for near C level speed.

We run our experiments on the Flickr, DBLP and Netflix dataset

from a recent set-similarity join survey by Mann et al. [21]. These

datasets were also used by [10] and [1]. In the survey these datasets

were identified as archetypical examples with and without Zipf-

like behaviour. Mann et al. write: “Most datasets, like FLICKR (cf.

Figure 7), show a Zipf-like distribution and contain a large number of

infrequent tokens (less than 10 occurrences), which favors the prefix

filter. In contrast, NETFLIX has almost no tokens that occur less than

100 times,” In practice, this means that the Netflix dataset requires a

much larger K , for reasonable recall than the Flickr dataset, but we

still get substantial improvements in recall on both.

5.1 Recall vs Memory usage
We are interested in how the number of hash values per stored

set trades with the recall. The number of such values is directly

proportional to the memory required to store the dataset. We focus

on the measure recall@10, whichmeans how often the estimated top

10 most similar sets contain the true most similar set. If the searcher

wants to obtain the true nearest set, they can use the estimation as

a fast first scan over the data, and then compute the true similarities

between the query and the 10 candidates. For optimal speed the

engineer wants to trade-off K for the number of candidates that

need to be “rescored”, so recall@30 or 100 may also be interesting.

We picked 10 for our experiments because of its standard use in

benchmarks [5].

For each experiment, we shuffled the dataset and split it into

10,000 sets for queries and the remaining for the database. The

database was hashed using K independent MinHash functions. The

shuffling and hash functions use the same randomness across ex-

periments with different datasets. We picked a handful of typical

K values and estimated the distances with the classical estimator,

the maximum likelihood estimator, and the Minner estimator with

respectively 0, 1 and 8 iterations of Newton’s method. For Flickr we

picked lower K values since the recall got very high very quickly.

The results are shown in tables 1, 2 and 3.

In every experiment, the Minner estimator beat the classical es-

timator, and for larger K the MLE or Minner estimator with Newton

iterations was best. Using 8 iterations of Newton’s method was

usually slightly better than running 1, but the difference was minor

compared to 0 vs 1 iteration.

The results are a bit hard to interpret, since a 98% to 99% improve-

ment may be much harder to get than a 40% to 44%, even if the

later is 4 times bigger in terms of percentage points gained. Instead,

we opt to measure improvement in terms of how many more Min-

Hash values we would have needed with the classical estimator to

obtain the recall of our best estimator. This has the advantage of

corresponding directly to space saved.

To measure the improvement in terms of increased K values,

we assume a simple non-negative logistic model recall@10 = 1 −

exp(−K/a) for some constant a depending on the estimator and the

dataset. Thus for recall r we need K = a log 1

1−r MinHash Values.

For a given recall r the improvement of model a1 over a2 in terms

of K is thus a factor a1/a2.
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Recall@10 on the Netflix dataset

K Classic MLE Minner Minner 1N Minner 8N

1 0.0033 0.0076 0.0099 0.0057 0.0063

10 0.0501 0.0396 0.0623 0.0506 0.0462

30 0.1474 0.1773 0.1914 0.1910 0.1862

100 0.3831 0.48(∗) 0.4640 0.4870 0.4903
400 0.7510 0.83(∗) 0.8054 0.8326 0.8338
500 0.7942 0.85(∗) 0.8440 0.8660 0.8667

Table 1. The Minner estimator is best at small K , but eventually the asymp-
totics kick in and the Maximum likelihood estimator overtakes. The MLE
is very slow however, and one can get most of the benefits by applying a
single iteration of Newton’s method on top of the Minner estimator. For
the midrange K values 30 and 100 we get a near 30% improvement in recall
over the classical estimator. (∗): MLE results for large K were stopped after
2000 queries and 48 hours.

Recall@10 on the Flickr dataset

K Classic MLE Minner Minner 1N Minner 8N

1 0.2379 0.3410 0.3595 0.2806 0.2969

5 0.6256 0.5457 0.6688 0.5913 0.6138

10 0.7770 0.7155 0.8122 0.7327 0.7469

20 0.8657 0.8540 0.8963 0.8217 0.8352

30 0.9108 0.9080 0.9301 0.8597 0.8714

Table 2. The Flickr dataset is much easier than the Netflix dataset and
as such doesn’t require as many MinHash values to obtain a good recall.
The Maximum likelihood estimator never overcomes its asymptotic disad-
vantage, but the Minner estimator improves 2-7% in recall over the classic
estimator, and all of 51% at K = 1.

We perform regressions (with least squares) based on this model

and the data in tables 1, 2 and 3. For Netflix, we get a
classic

= 300.7

and a
best
= 233.9 showing an improvement of 28.5% in terms of

K values. For Flickr, we get a
classic

= 10.73 and a
best
= 9.644,

corresponding to an 11.3% improvement, and for DBLP, we get

a
classic

= 204.2 and a
best
= 168.3, a 21.4% improvement.

Alternative we could have used a normal logistic model r =
1/(1+ exp(−K/a)). Fitting our data with this model results in larger

improvements of resp. 53.1%, 27.5% and 14.5%. However the model

is a bad fit, since it has r ≥ 1/2 for all K ≥ 0. We could fix this by

adding a constant term and use r = 1/(1 + exp(b − K/a)), however
then the ratio of improvement is no longer independent of r .

5.2 Estimation
The other natural experiment to perform is measuring the differ-

ence between estimated similarity and real similarity. Figure 6 is

inspired by [27]. We sampled 50 random queries from the dataset

and estimated the similarity to all other sets. For each batch, we

subtracted the real similarity and computed mean and percentiles.

While this is not the main focus of the paper, we note that the res-

ults are consistent with the variance computed for the MLE and our

experimental variance computations in fig. 5.

The code for every plot is available at [2] as well.

Recall@10 on the DBLP dataset

K Classic MLE Minner Minner 1N Minner 8N

1 0.0036 0.0097 0.0105 0.0071 0.0080

10 0.0987 0.0998 0.1057 0.0993 0.1072
30 0.2978 0.3438 0.3264 0.3445 0.3524
100 0.5736 0.6460 0.6145 0.6519 0.6536
400 0.8676 0.90(∗) 0.8932 0.9148 0.9153
500 0.9009 0.93(∗) 0.9214 0.9380 0.9385

Table 3. The DBLP dataset appears somewhere in between Netflix and
Flickr in terms of difficulty. On DBLP the MLE (or Minner with Newton
iterations) generally does better than pure Minner. (∗): MLE results for large
K were stopped after 2000 queries and 48 hours.

Fig. 6. Mean values with 1 standard deviation bounds (15.9% percentile) on
the estimation error for 5 million pairs from the Netflix dataset.

6 CONCLUSION
We have shown that it is possible to substantially improve upon the

traditional MinHash estimator in the database or one-way commu-

nication setting. Our analysis has shown one can reduce the global

risk by nearly 30%, and much more when the size of the sets differ.

Meanwhile, our experiments have shown a similar improvement in

recall on standard datasets.

While our first estimator had a running time ofΩ(K min{|X |, |Y |}),
can be slow, we derived a faster O(K) time estimator, which has a

similar variance and often even an improved recall. The success of

our Minner estimator also suggests that the count of “hash values

smaller than the minimum” could be used more widely. Perhaps as

part of the input supplied to Machine Learning pipelines working

with coordinated sampling.

While our estimator only takes time O(k) per data point, they do

however still need to do at least two table lookups per value, where

the classical estimator just needs to do a single equality comparison.

In section 4 we discussed how the table lookups could be done using

fast SIMD instructions, as is done in the Product Quantization world,

which presumably would close the remaining gap.
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Fig. 7. The density of estimation errors on Netflix dataset at K = 31 over a
million pairs. Besides a slightly better variation, the maximum likelihood
estimator has a much better chance of getting a “perfect” estimate.

7 OPEN PROBLEMS
Besides the SIMD considerations in section 4, there are a number of

potential future directions:

(1) Weighted MinHash [17] And “Probability MinHash” [23] are

common extensions of MinHash to non-binary data. As with

classical MinHash all known estimators follow the symmetric

paradigm, so could potentially see similar improvements to

what we have shown in this paper.

(2) Is the Minner Estimator consistent? In section 3.3 we gave

results that indicate Minner may not be unbiased. However,

experimentally it appears to converge to the right value as

K →∞.
(3) Use a Bayesian prior for Y . In section 3.1 we briefly discussed

the possibility of assuming a prior on Y other than the uni-

form distribution. Since all the datasets of Mann et al. [21]

have some elements of the domain more common than others

(and the Flickr dataset particularly so), such a prior, based on

statistics on the dataset, could potentially be very efficient.

(4) Finally we suggest the task of finding the best possible sketch

for sets in general. In [3] it was shown that a best possible

space partition exists for set similarity search with any set

similarity measure. One could imagine a similar result, which

would replace MinHash as the preferred quantization method

for sets.
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