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Abstract

In this paper I build a fully automatic system for translation of
natural language into formal logic. I combine a variety of tools and
theories to target standard issues such as anaphora resolution, sen-
tence polarity etc. In particular I base my framework on dynamic
logics in form of Dynamic Predicate Logic and a set of enhancements
by Albert Visser[27].

‘Donkey Monoids’, as I will call these monoidal DPL variants, are
part of a movement in linguistics towards logics that can more nat-
urally approximate human language in aspects such as polarity and
scope. Indeed their name derives from the famous ‘Donkey Sentence’
by Geach[7] which exhibit these issues so well.

Visser didn’t test his ideas computationally and neither did most
people involved with DPL. In fact most of the classical literature on
logification of natural language exhibits this ‘problem’: Not testing
computationally makes it easy to miss obvious details. With the
present paper I supply such an experiment.

I build a rewriting system with a well defined set rules, discussing
possible semantics. I apply the framework to a large collection of
sentences, showing the conversion process step by step. Finally I dis-
cuss ways to enlarge the supported fragment of English, how we can
combat and interpret the inherent ambiguity we meet, and how the
flexibility of Donkey Monoids relate to the classical Montague lambda
structures.

Keywords: Natural Language Semantics, Meaning, Dynamic Predicate Logic,
Donkey, Monoid, Montague Grammar, Computational, Haskell
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1 Introduction

There are many reasons why it is interesting to represent information in a logical
language. For a computer scientist, the biggest advantage is that we can compute
with logic. There is a horde of algorithms for doing querying, question answering,
reasoning, unification and resolution - to all of which they key is a formal logic
definition of your information.

Knowledge bases In the field of Knowledge Representation and Reasoning, they
long ago discovered that formal logic provides a good language for building
ontologies. Typical users are crime fighters or life scientists that need to draw
conclusions based on complex systems[17] where most of the known facts are
only described in natural language. Today those people use mainly have to
manually build large models in GUI tools, but an automated approach is
much wanted.

Semantic search From the early days of database systems logic was identified[5]
as a good language for querying. Today technologies like Facebook Graph
Search allows users to execute searches like ‘Restaurants in London my
friends have been to’. The missing piece is a reliable translation system.

Robots Since the beginning of Artificial Intelligence, logic based approaches have
done well.[25] Robots need to store relationships they learn about the world
and react to it. For modern ‘robots’ like Apple’s Siri to be able to commu-
nicate with people, a translation layer between natural language and logic
is a plausible path.

It would seem that getting computers to understand and work with natural
language is on of the biggest challenges in information technologies this day. Mov-
ing the problems into the space of formal logic is a classical and tempting path. It
does however remain open whether our formal logics actually have the power to
express most of the sentences people casually voice on a daily basis. In this paper
we will assume it does for enough practical cases to be useful.

The reason logics like DPL and Visser Monoids exist is a famous sentence
noted by Peter Thomas Geach in 1962[7]: ‘Every farmer who owns a donkey beats
it’. As we will see, this sentence illustrates that even if we restrict ourselves to
factual sentences, formal first-order logic still runs into a lot of problems when
representing many natural sentences. In fact this sentence broke early automatic
approaches to logification, and led to the construction of Discourse Representation
Theory (DRT)[12].

Before I go into more details on my automatic logification scheme, let’s have a
look at some of the issues we run into if we try approach the task manually. This
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should help us get a feeling of what a formal logic translation of natural language
actually looks like:

1. ‘Socrates is a donkey’: donkey(Socrates). This is a classical logical example,
treating Socrates as a constant. If we want to do without constants we can
write: ∀x(Socrates(x) → donkey(x)). See how this allows for more than
one Socrates to exist.

2. ‘All his donkeys are treated well’: This sentence somewhat willingly lets
itself translate into: ∀y(his(x, y) ∧ donkey(y) → treated well(y)), which
has a free variable x referring to some (male?) entity in the context of the
discourse.

3. ‘Every farmer beats his donkey’: This sentence clearly has two possible
meanings: ∀x(farmer(x) → ∃y(beats(x, y) ∧ his(x, y) ∧ donkey(y)), if ‘his’
refers to the farmers, or ∃y(his(x, y)∧donkey(y)∧∀z(farmer(z)→ beats(z, y))
if it refers to somebody else. There is no way we can know without more
context information.

4. ‘The happy donkey doesn’t exist’: Here we get into more problems. We
might write: ∃x(happy donkey(x) → doesn′t exist(x)), but that asserts
some sort of entity representing the non existing donkey. Alternatively we
could write ∃x(happy donkey(x)→ ⊥), but that is another sentence: ‘There
are no happy donkeys’. In any case it makes it hard to say what the logical
meaning of ‘the’ really is.

5. ‘The donkeys are being stubborn!’: This is an often used example of an ‘im-
plied action’ sentence and thought to have the same meaning as ‘Please go
out and beat them!’. The best we can do here seems to be please beat the donkeys()
or perhaps ∀x(donkey(x)→ please beat(x)) or even please(∀x(donkey(x)→
beat(x))).

6. ‘Jane beats a donkey’: This is easy to translate to ∃x(donkey(x)∧beat(Jane, x)),
but are we comfortable that this is also our interpretation of the sentence
‘It is not the case that Jane doesn’t beat a donkey’ and even ‘Jane beats a
donkey and either it is raining or it isn’t’? It is hard to imagine a language
with strong logical foundations, where those three sentences wouldn’t be
equal.

Hopefully those examples make a convincing argument that some uses of En-
glish, especially example 4 and 5, are well beyond what we can hope to automati-
cally logify. However you might think the sentences of ‘factual nature’ like 1 and
2 look pretty trivial? In this paper we will see that they are certainly possible,
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but as sentences get longer and more complex, certainly tricky, and this is where
Donkey Monoids, Dynamic Predicate Logic (DPL) and Discourse Representation
Theory (DRT) come into play. Let’s take a close look at that ‘Donkey Sentence’:
‘If a farmer owns a donkey, he beats it’.

From the examples before, and perhaps from common intuition, we might find
it natural to think of the sentence as two sub-sentences combined by ‘if’: ‘if (a
farmer owns a donkey) (he beats it)’. Translating the parentheses first: ‘A farmer
owns a donkey’ logifies to ∃x(farmer(x) ∧ ∃y(donkey(y) ∧ owns(x, y)), and ‘he
beats it’ translates to beats(x, y). Hence the whole formula should probably be:

∃x(farmer(x) ∧ ∃y(donkey(y) ∧ owns(x, y)))→ beats(x, y) (1)

Which is totally wrong. The beats(x, y) clause ends up referring to the variables
outside of their scope, and even if we try to push it inside the parentheses:

∃x(farmer(x) ∧ ∃y(donkey(y) ∧ owns(x, y)→ beats(x, y))) (2)

It doesn’t work either. Sentence (2), while syntactically correct, evaluates to true
as long as a single farmer beats his donkey. In fact as long as any farmer exists
(2) evaluates to true. This is because ∃y also spans over the farmer entity (and he’s
not a donkey) which makes the antecedent false. Clearly this is not the formula
we are after.

What turns out to be the correct logification is this:

∀x(farmer(x)→ ∀y(owns(x, y) ∧ donkey(y)→ beats(x, y))) (3)

A far cry from our original ‘guess’. Moreover the above version even has the oddity
that the interpretation of ‘all’ is ‘the logical one’: The formula (3) is, in addition
to the intuitive situations1, also considered true if no farmers exist in the domain,
or none of them own donkeys.

Now the above example may seem a bit contrived. Why did I have to try
to combine the meaning from the obviously wrong pieces? Wasn’t some other
strategy more obvious? Before we go into details of such logification strategies,
let’s first see how easy it could have been, if we instead of first-order logic had
used Visser’s Donkey Monoids:

1 · ∃x · farmer(x) · owns(x, y) · 4 · ∃y · donkey(y) · 4 · 1 · beats(x, y) (4)

If we read ∃ as ‘a’ this is basically identical to the English sentence. The don-
key monoid even supports placing the transitive verb between the two referents.
Clearly some magic is going on, that we will have to investigate further.

1For non logicians at least.
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Neat as the Donkey Monoids are, and interested as we are in their automation,
we should be very concerned about those magical 1s and4s which have popped up
in our formula. We’ll want to ask questions such ask (1) What do they mean? (2)
How do they work? And (3) how do we know when to use them? Visser himself,
while answering question 1 and 2 in great detail, doesn’t give many hints on 3.
Only that they ‘switches’ are probably controlled by adverbs and other support
words.

So if we don’t know how to use them, how can we know if the Donkey Monoids
are good logics for natural language? In the later chapters I will discuss their
formal meaning in more detail and also what semantic meaning I intend to give
them. In the final chapters we will see just how much flexibility this approach
allows us.

We need a framework to encode our rules into, and luckily the field of compu-
tational semantics offer several solutions. Basically there are two well described
ways to go: statistical vector space methods, which is very much the most pop-
ular alternative right now, and logical methods. As you might have guessed I
will lean in the direction of the later. The most well described methods are Mon-
tague Grammars and Discourse Representation Theory (invented after the donkey
sentence).

In the early sixties the American logician, Richard Montague, was teaching a
class in which the students had to do logification of simple sentences. He noticed
that there were many patterns in the way they did it, and conjectured that it
would be possible to formalize the entire process. So he set out to write a series of
papers that became very influential in the philosophy of language, linguistics and
computer science.

The Montague Grammar, as Montague’s approach came to be know, has sur-
vived in computational linguistics for decades. Perhaps its main charm is in its
rich promises for a simple, consistent way to describe all of language. The basic
idea is to define logical formulas recursively over the so called constituent tree of
a sentence. The tree is based on the idea of context free grammars for natural
language developed mainly by Noam Chomsky[2]. Figure 1 is an example of what
one might look like.

We will see later how exactly the Montague Grammar obtains a full sentence
formula from its recursive process, but in any case for a computer scientist the
introduction of trees is always a promising step.

The main thing to notice now is that for Montague’s approach to work, it is
crucial that we can always get the meaning of a composed phrase from a composi-
tion of the meaning of its sub-phrases. This compositional property is exactly what
we saw earlier that first-order logic doesn’t posses, and Montague goes through
many hoops to simulate it.
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Figure 1: A Constituent Tree

I do however avoid many of those problems, since my choices of logic behave
much more compositionally than the FOL in Montague’s proposed rules. To draw
a full circle I am however going to translate the obtained Donkey Monoid rep-
resentations into first-order logic so we can easily check if our formulas have the
meanings we expect.

This is the chain I am going to build:

1 Natural Language We start with a file of simple English natural language
sentences. Each line is processed on its own, but may contain more than
one sentence.

2 POS tagger This is the first of three Stanford NLP programs my Haskell script
is going to pass the text to. Then the POS tagger tokenizes the sentences
and statistically tries to figures out part of speech for each word. This is
also my first source of error.

3 Constituent Grammar It might be that the reason Montague and other early
pioneers didn’t test their programs mechanically was their lack of access to
a good parser. The Stanford Parser is the best on the market, but it still an
error rate of around 5% which is one in every two sentences.

4 Coreference Resolution A lot has been said about how anaphora might be
resolved using formal Montague Grammar like approaches. DRT is especially
focused on this topic. None the less the current champion of anaphora
competitions[16][22] is the heuristical Stanford Deterministic Coreference
Resolution System, the workings of which I will explain in detail.

5 Donkey Monoid For us the step from 4 to 5 is the most interesting, as it is
where we go from syntax to semantics. If we manage to push our original
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text through to here, not much can go wrong. Only issue is if the logical
meaning we create is not the one intended by the speaker.

6 Dynamic Predicate Logic Since the Donkey Monoids are variants of DPL,
they are easy to convert into it. It is much more surprising that DPL lets
itself convert into first-order logic.

7 First-Order Logic We end up translating our dynamic logics into this old
friend. This is mainly done to test the conversion algorithm, and because the
first-order logic is what we are used to read. The results can be surprising.

However before we can go into the many technical details, we need to develop
a very good understanding of the logics and ideas we are working with.

8



2 Dynamic Semantics and Montague

In these chapters I’m going to describe the logical theories by Visser and earlier
dynamic semanticists. I will introduce some additions of my own and prove inter-
esting properties about them. Finally, but most importantly, I will go into depth
with the tools and ideas we need to write a strong logification framework.

In the previous chapter I showed how first-order logic lacks certain composi-
tional properties. A possible solution to this problem is to use a so called ‘update
logic’ (a logic with update semantics). Update semantics are logics inspired on the
semantics of programming languages where a variable, once introduced, will stick
around for a period not know at the time of its introduction.

The idea of those logics is a ‘growth of information in time’, starting from no
information, and with each statement adding more. Information is here seen in
the semantic way, where no information is when everything is possible (>) and
total information is when nothing is possible (⊥).

Logicians and linguists have come up with many different update logics since
the 80s. I will quickly describe the four most cited ones, to give an idea of the
landscape we’re working in:

• Discourse Representation Theory, 1981 by Hans Kamp[11], is perhaps the
best known approach to using update semantics for understanding language.
Kamp takes a very philosophical approach, thinking of his logic as a model
for how a person builds up a context during a conversation.

For example, say you you listen to ‘Some farmer owns no donkey. He beats
it’. Discourse Representation Theory (DRT) builds this up from two blocks.
Each consists of a set of referents and a set of properties using those. Un-
derlined referents are referents that need to be ‘merged’ with a properly
‘introduced’ one:

[1x | farmer(x),¬[2y | donkey(y), owns(x, y)]]
⊕ [1v, w | beats(v, w)]

The rule for ‘⊕’ is simply to do a disjoint union of the referents and the
properties:

[1x, v, w | farmer(x),¬[2y | donkey(y), owns(x, y)], beats(v, w)]

At this step it is possible to perform anaphora related heuristics. Since x is
the first parameter of farmer, we assume it should be so for beats as well:

[1x, v, w | farmer(x), v = x,¬[2y | donkey(y), owns(x, y)], beats(v, w)]
[1x,w | farmer(x),¬[2y | donkey(y), owns(x, y)], beats(x,w)]
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On the other hand y is not known in the scope of beats, so there is no way
we can get rid of w. And we shouldn’t, because in the sentence there is of
course no way ‘it’ can refer to ‘a donkey’.

To deal with our example of ‘If a farmer owns...’, DRT introduces more
symbols for weak and strong conditionals.

• File Change Semantics, 1982 by Irene Heim[10], are based around the puz-
zle of discourse ‘referents’ which may, as we have seen, sometimes act like
quantifiers, sometimes referents and sometimes antecedents. Heim suggests
using so called ‘file cards’ which though developed independently, has a lot
in common with DRT.

However, where DRT defines complex rules for merging different ‘discourse
referents’, in File Change Semantics (FCS) the part ‘added onto’ a file gets
to decide how the merge is made. Some how similar to how lambda functions
in Montague grammars give you a lot of flexibility. For example in case of
‘adding’ p, an n-ary atomic predicate, to a file F :

Sat(F + p) = {a ∈ Sat(F ) | R(ai1 , . . . , ain)}

Where Sat is the function that takes a file to the set of ‘individuals’ ‘satis-
fying’ it.

• Mental Spaces, 1984 by Fauconnier[6], is not really a logic in that it’s not
build on a model theoretic interpretation. It does however build on the same
idea of ‘information growth’ on a context representation. Mental Spaces
(MS) represent the current context as a graph of predicates and variables:

beats

xfarmer z donkey

y owns

agt

obj

dependent
a

every

def-as

agt

obj
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Notice here in particular the interesting ‘dependent’ arrow. This arrow com-
municates that there is a one-many relationship between farmer and donkey,
and hence that we are talking about a specific donkey for each farmer, not
a single poor donkey beaten by everyone.

• Dynamic Predicate Logic, 1991 by Groenendijk and Stokhof[8], is what I will
focus on in the remains of this paper. In contrast to some of the previous
models, the authors of Dynamic Predicate Logic (DPL) don’t make any
big philosophical claims on connections between their model and the brain.
Instead they simply create a logic that is isomorphic to PL, while keeping a
reasonable amount of ‘update semantics’ like properties, such as being closer
syntactically to natural language.

DPL also doesn’t provide any guidance into resolving anaphora. Just like
giving meaning to the actual concepts, this must be handled outside of the
logic. We will see later in this paper that this stance makes sense, since the
current state of the art anaphora resolvers are based on simple heuristics
over noun phrases.

In the end of this chapter we will see how a certain monoid construction by
Visser can give us as much flexibility in DPL as we would get with a more
involved system such as DRT or FCS.

2.1 DPL

Dynamic Predicate Logic has been developed by a wide group of people: Jan van
Eijck and Fer-Jan de Vries[4], Hans Kamp, Veltman, Groenendijk and Stokhof. It
is the linguist version of Dynamic Logic invented by Pratt[21] which is again built
on top of Floyd-Hoare Logic for reasoning about computer programs.

DPL cleverly uses this basic logical research to create a very simple, self-
contained logic, while still getting all the benefits of compositionality etc. To
model a simple sentence ‘A man comes in. He sees a donkey. He smiles.’, we
write:

(∃x ·man(x) · comes in(x))
· (∃y · donkey(y) · sees(x, y))
· (smiles(x))

(The parenthesis is only for clarity. The logic is 100% associative). Notice how
we introduce referents casually as we progress in the discourse. We even manage
to look pretty similar to PL at the same time.
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Too understand the semantics of the above, let’s start by considering a simple
example with two variables (a and b) and a domain with three entities (0, 1 and
2). I said earlier, that the update semantics modeled ‘growth of information over
time’, so we’ll start with the case that every 32 assignments are possible:

{〈a 7→ 0, b 7→ 0〉, 〈a 7→ 0, b 7→ 1〉, 〈a 7→ 0, b 7→ 2〉,
〈a 7→ 1, b 7→ 0〉, 〈a 7→ 1, b 7→ 1〉, 〈a 7→ 1, b 7→ 2〉,
〈a 7→ 2, b 7→ 0〉, 〈a 7→ 2, b 7→ 1〉, 〈a 7→ 2, b 7→ 2〉} (5)

A DPL formula is defined as a relation between assignments, and J·K is the
function that takes a formula to its relation. For example 〈a 7→ 1, b 7→ 1〉Ja =
1K〈a 7→ 1, b 7→ 1〉 is true because the a = 1 ‘program’ executes successfully. We also
require that simple tests like this one doesn’t change the state, so 〈a 7→ 1, b 7→ 2〉
would not have been a valid assignment on the right hand side.

Just like with programs, we can combine multiple formulas into bigger ones:
〈a 7→ 0, b 7→ 2〉Ja = 0 · b = aKψ is false for all ψ, and 〈a 7→ 2, b 7→ 1〉Ja = 0 ∪ b <
2K〈a 7→ 2, b 7→ 1〉 is true. If we take the image of (5) under a = 0 · ¬(b = 2) we get

{〈a 7→ 0, b 7→ 0〉, 〈a 7→ 0, b 7→ 1〉} (6)

If we take the image of (6) under a = 1, we end up with the empty set of
states. That is because there are no possible assignments satisfying our formula.
Hence we consider a = 0 · ¬(b = 2) · a = 1 a falsum, also defined as ⊥.

So why do we define all of this using relations, and not just functions from
states to truth values? The reason is that we want to introduce a special relation
∃x (for some variable name x). We want it to analogous to ∃x(...) from first-order
logic. It’s not immediately obvious what the correct definition should be.

The trick is to consider the conjunctive DPL relation ∃x · x = 1 - we want this
to work such that 〈a 7→ 0〉J∃x · x = 1K〈a 7→ 0, x 7→ 1〉. Now considering x = 1 is
a filter, it must be that ∃x is a relation that allows any value for x on its second
argument. For example we see that the image of (5) under ∃x has 27 possible
states.

Let’s have a look at the model theoretic definition of the semantics. This is
sometimes done in two steps: First defining a relational algebra and then builid
DPL on top of it. However DPL is basically identical to the relational algebra, so
we are going to try and do everything in one step:

Let a signature Σ for DPL be a structure 〈Pred,Ar, V ar〉. Pred is the set
of predicate symbols containing at least =, > and ⊥. Ar is the function from
predicate symbols to their arity and in particular we have Ar(=) 7→ 2, Ar(>) 7→ 0,
Ar(⊥) 7→ 0. Finally V ar is the set of variable symbols we may use. We are not
going to work with constants in this treatment.
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We are further going to define:

PropΣ = {P (x1, . . . , xn) | P ∈ Pred, Ar(P ) = n, x1, . . . , xn ∈ V ar} (7)
ResetΣ = {∃x | x ∈ V ar} (8)
AtomΣ = PropΣ ∪ResetΣ (9)

The set of formulas we will say to be the smallest set FormΣ satisfying:

AtomΣ ⊆ FormΣ (10)
If ψ ∈ FormΣ then ¬(ψ) ∈ FormΣ (11)

If ψ1, ψ2 ∈ FormΣ then ψ1 · ψ2 ∈ FormΣ (12)
If ψ1, ψ2 ∈ FormΣ then ψ1 ∪ ψ2 ∈ FormΣ (13)

A model M of a signature Σ is a tuple 〈D, I〉. The model is very similar to
first-order logic in that D is the domain, a set of entities, and I is the interpretation
function PropΣ → (Asgmt → B), (Asgmt being the set of possible assignments,
B the set of boolean values).

Just like in first-order logic we want to denote whether a formula is true or
false, and just like in first-order logic we do this by saying that an assignment can
satisfy a formula, defined as below. If a formula is satisfied by all assignments
(equivalent to being satisfied by the empty assignment), it is a tautology.

α |= ψ :≡ ∃β(αJψKβ) (14)

We then define our relations in the set theoretic way, as sets of pairs:

Jψ1 · ψ2K :≡ {〈α, β〉 ∈ Asgmt2 | ∃γ(〈α, γ〉 ∈ Jψ1K ∧ 〈γ, β〉 ∈ Jψ2K)} (15)

JP (x1, . . . , xn)K :≡ {〈α, α〉 ∈ Asgmt2 | I(P )(α)} (16)

Or we can define them more succinctly, pointwise for all assignments α, β:

αJψ1 · ψ2Kβ :≡ ∃γ(αJψ1Kγ ∧ γJψ2Kβ) (17)
αJψ1 ∪ ψ2Kβ :≡ αJψ1Kβ ∨ αJψ2Kβ (18)

αJP (x1, . . . , xn)Kβ :≡ α = β ∧ I(P )(α) (19)
αJ¬ψKβ :≡ α = β ∧ α 6|= JψK (20)
αJ∃xKβ :≡ ∀ω(ω 6= x→ αω = βω) (21)

Using those basic axioms we can derive > and ⊥ given our usual interpretations:

αJ⊥Kβ ≡ α = β ∧ I(⊥)(α) ≡ ⊥ (22)
αJ>Kβ ≡ α = β ∧ I(>)(α) ≡ α = β (23)

(24)
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Taking ψ1 → ψ2 to mean ¬(ψ1 ∧ ¬ψ2) we also get the following neat equation,
originally by Groenendijk and Stokhof[8]

αJψ1 → ψ2Kβ :≡ αJ¬(ψ1 ∧ ¬ψ2)Kβ
↔ α = β ∧ α 6|= Jψ1 ∧ ¬ψ2K
↔ α = β ∧ ¬∃γ(αJψ1 ∧ ¬ψ2Kγ)
↔ α = β ∧ ¬∃γ(∃δ(αJψ1Kδ ∧ δJ¬ψ2Kγ))
↔ α = β ∧ ¬∃γ(∃δ(αJψ1Kδ ∧ δ = γ ∧ δ 6|= Jψ2K))
↔ α = β ∧ ∀γ(∀δ(δ = γ → (αJψ1Kδ → δ |= Jψ2K)))
↔ α = β ∧ ∀γ(αJψ1Kγ → γ |= Jψ2K) (25)

In my implementation section, I describe how the above can be efficiently
implemented in Haskell using an isomorphism between relations P(A × B) and
functions A→ P(B). I also show how the Kleisli combinator takes the role of ·.

However let’s first look at some of the implications of the above definitions.
For example, how can we intuitively understand the DPL notion of →? Well, first
notice that many of the equations start with α = β ∧ . . . . These equations we
can think of intuitively as having a closed scope. We saw earlier how DRT nicely
determined that the ‘it’ in ‘Some farmer owns no donkey. He beats it’ couldn’t
refer to ‘a donkey’ because the negation didn’t let its variable out. In DPL we
get the same effect. Because an assignment must be the same before and after a
negated clause, all new variables introduced inside the clause have disappeared.

Of course this ‘static negation’ might not always be the right thing. Consider
the sentences ‘It is not that case that a farmer doesn’t own a donkey. He beats
it’. This should be a good sentence, but we can’t handle it. In section 6.1 I will
look at how this might be handled.

The DPL ψ1 → ψ2 in particular can be seen as the filter, that if you can
get ‘through’ ψ1 then you must also be able to get through ψ2. But notice that γ
doesn’t have to equal α. Hence variables introduced in ψ1 can well bind variables in
ψ2. This will show to be extremely important in the treatment of donkey sentences
later.

Talking about binding, also notice that our union or ‘or’ construct is a bit
special. ψ1 and ψ2 cannot bind variables in each other, but in (ψ1∪ψ2)·ψ3 they can
both bind variables in ψ3. We won’t actually use ‘or’ in the main implementation2,
but in the appendix 6.1 I look more closely at the weird situations that can arrise.
I also consider the alternative definition of ‘or’: ¬(¬ψ1 · ¬ψ2).

2Turns out the Stanford tools find it weird as well.
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2.1.1 Connection with First-Order Logic

An interesting property of DPL is that it is isomorphic with classical logic. Any
PL formula corresponds to one in DPL and vice versa. This gives an alternative
way to define and understand the semantics of DPL, and it relaxes us that nothing
‘weird’ is going on. We might also be a bit disappointed that after all this work,
we don’t possess any extra power, but let’s forget about that for now, and see how
the conversion works.

We can define a conversion function J·K from FOL to DPL very easily. The
only trick is that we need a way in DPL to create the closed scopes used in FOL.
¬(¬(·)) does nicely:

JP (x1, . . . , xn)K ≡ P (x1, . . . , xn) (26)
J¬(φ)K ≡ ¬JφK (27)

Jφ1 ∧ φ2K ≡ Jφ1K · Jφ2K (28)
Jφ1 ∨ φ2K ≡ Jφ1K ∪ Jφ2K (29)

J∃x(φ)K ≡ ¬(¬(∃x · JφK)) (30)
J∀x(φ)K ≡ ∃x→ JφK (31)

Similarly we can create a function from DPL to FOL, but perhaps we should
be a bit concerned on how to interpret the meaning of an FOL formula and a DPL
formula being equivalent. After all DPL formulas are relations where PL formulas
are propositions. In the above it was all easy, but let’s think again about what we
are doing.

We are going to use our definition of α |= φ for DPL formulas. An FOL formula
φ and a DPL formula ψ are defined to be equivalent exactly when ∀α(α |= φ ↔
α |= ψ). Perhaps the best way to see why this is a good definition (other than its
simplicity) is to think programs and weakest preconditions. Every initial state for
the ‘computation’ farmer(y) · ∃x · x = y must model farmer(y) ∧ ∃x(x = y) in
order to succeed.

To smoothen the following derivations, we will define the function 〈ψ〉φ :
DPL× FOL→ FOL by

α |= 〈ψ〉φ ↔ ∃β(αJψKβ ∧ β |= φ) (32)

Notice from this definition that 〈ψ〉> is the conversion function from DPL to
FOL. Using definition (32) and formulas (17) to (21) we can derive the following
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equivalences. See appendix 6.2 for my full proofs of meaning preservation.

〈∃x〉φ ≡ ∃x(φ) (33)
〈ψ1 · ψ2〉φ ≡ 〈ψ1〉〈ψ2〉φ (34)
〈ψ1 ∪ ψ2〉φ ≡ 〈ψ1〉φ ∨ 〈ψ2〉φ (35)

〈P (x1, . . . , xn)〉φ ≡ P (x1, . . . , xn) ∧ φ (36)
〈¬ψ〉φ ≡ ¬〈ψ〉> ∧ φ (37)

〈ψ1 ∨ ψ2〉φ ≡ (〈ψ1〉> ∨ 〈ψ2〉>) ∧ φ (38)

The simple predicates 〈⊥〉φ ≡ ⊥ and 〈>〉φ ≡ φ follow trivially from (36).
Using the first 5 equations, equivalences for derives operators such as → and ∨
can be derived syntactically as also shown in appendix 6.2.

An alternative way to the 〈ψ〉φ function for looking at the above equations is
to think of the 〈·〉s as elements on a stack. This is indeed how I have implemented
the DPL to FOL routine in appendix 6.4.

2.2 Donkey Monoids

With the introduction of DPL we came a long way in terms of a compositional
logic. However looking once more at the donkey sentence variation:

A farmer owns a donkey, if he beats it.

And its DPL formula:

∃x · farmer(x) · ∃y · donkey(y) · beats(x, y)→ owns(x, y) (39)

We see that we still haven’t reached the compositional Nirvana. Equation (39) is
clearly not based on the composition of ‘A farmer owns a donkey’ and ‘if he beats
it’ in a direct way.

2.2.1 Polarity Switcher

To help our course, Albert Visser suggests the construction of a special monoid
over DPL. The idea is that we are going to simultaneously work on two ‘streams’
of DPL, and switch easily between them with a special constant 1.

The inverse donkey sentence can now be expressed as:

1 · ∃x · farmer(x) · ∃y · donkey(y) · 1 · owns(x, y) · 1 · beats(x, y) (40)

which ‘internally’ is represented by the following streams of information:

(−) ∃x · farmer(x) · ∃y · donkey(y) beats(x, y)
(+) owns(x, y)

(41)
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Visser interprets the above as the DPL formula (−)→ (+).
Another example from Visser is: ‘A man keeps his word. He is honest’ which

roughly translates into: 1 · ∃x ·man(x) ·1 ·keepword(x) ·honest(x) for the general
reading. Visser has a whole lot more examples in his paper[27].

So how do we define this nifty 1? The trick is to move the entire dynamic
predicate logic from before into an monoid that will help us keep track of some
extra details.

A monoid is an simple algebraic structure with a one associative binary op-
eration and an identity element. Our monoid 〈D, ·〉 is going to have the domain
D = DPL×DPL× {+,−}, which is populated by:

〈>, φ,+〉 ∈ D for all φ ∈ DPL (42)

With no chance of confusion, we will simply denote these elements by their DPL
representation. For example D contains the constants > and ⊥ and the 1 constant
here defined:

> := 〈>,>,+〉 (43)
⊥ := 〈>,⊥,+〉 (44)
1 := 〈>,>,−〉 (45)

The associative operation · is as below. To make the definition slicker, we give the
set {+,−} a multiplication operation ++ 7→ +, +− 7→ −, −+ 7→ −, −− 7→ +.

〈q−, q+, α〉 · 〈r−, r+, β〉 := 〈q− · r−α, q+ · r+α, αβ〉 (46)

Notice how we keep the negative stream in the first position of the tuple, and
the positive stream at the second position. The third position indicates to what
stream we are currently writing. For example, if we are writing to the negative
stream, and we apply an element that itself asks us to continue at its negative
stream, we go back to the positive stream.

2.2.2 Scope Modifier

We won’t spend much time with the above monoid though, since we are imme-
diately going to introduce a generalization! We are going to introduce the scope
modifier 4, which allows us to write:

A farmer owns a donkey. He beats it.

(that is just some single farmer and donkey) as

∃x · farmer(x) · owns(x, y) · 4 · ∃y · donkey(y) · 4 · beats(x, y) (47)
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That is very close to the order of the natural language!
And combining the scope modifier with the polarity switched we can finally, as

promised, write our original sentence ‘If a farmer owns a donkey, he beats it’ as:

1 · ∃x · farmer(x) · owns(x, y) · 4 · ∃y · donkey(y) · 4 · 1 · beats(x, y) (48)

In stream form, that is:

(−, 1) ∃y · donkey(y)
(−, 0) ∃x · farmer(x) owns(x, y)
(+, 1)
(+, 0) beats(x, y)

(49)

With the DPL interpretation being (−, 1) · (−, 0) → (+, 1) · (+, 0). Notice that
the negative relations are again put on the left side of the implication, and the
relations with larger scope value are put before those of lower value. We see 1 and
4 are commutative, since they work entirely on their own indicator.

As expected from the above diagram, we are going to define our new monoid
〈D, ·〉 as having the domain3 DPL4 × {+,−} × Z2 with the elements:

〈>,>,>, φ,+, 0〉 ∈ D for all φ ∈ DPL (50)

In addition to 1 and 4 defined as:

> := 〈>,>,>,>,+, 0〉 (51)
⊥ := 〈>,>,>,⊥,+, 0〉 (52)
1 := 〈>,>,>,>−, 0〉 (53)
4 := 〈>,>,>,>+, 1〉 (54)

For · the definition works just like in the previous case, though slightly more
complicated:

〈q−,1, q−,0, q+,1, q+,0, α, i〉 · 〈r−,1, r−,0, r+,1, r+,0, β, j〉 := (55)
〈q−,1 · r−α,1+i, q−,0 · r−α,i, q+,1 · rα,1+i, q+,0 · rα,i, αβ, i+ j〉

In his paper Visser now goes on to define / and . which work similarly to 1
except they work ‘backwards and forward in time’. This allows us to model ‘if he
beats it’ entirely on its own as / · beats(x, y) in

∃x · farmer(x) · owns(x, y) · 4 · ∃y · donkey(y) · 4 · / · beats(x, y) (56)

3We have chosen to model our scopes in Z2. It’s an interesting question to consider
what sentences might require three or more levels of scoping. If we chose to work on the
entire Z, we could define 4 to go up in scope and O to go down.
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If we immagined a system that tried to build meaning from its input as soon as it
came in, / would allow us to account for ‘surprises’ like in the sentence:

He sees... no donkey

In this case we would compositionally like to start out with sees(x, y) expecting
a 4 · ∃y · 4 somehow, but when we instead see the negation, we end up with the
formula:

sees(x, y) · / · ⊥ · . · 4 · ∃y · donkey(y) · 4 (57)

Visser suggests / · ⊥ · . often is a good candidate for words like ‘no’ and ‘nobody’.
Unfortunately these retrospective triangles tend to mess sentences enough up, that
I had to include brackets everywhere to keep things under control. More brackets
are seldom the way to beautiful formulas, so in the automatic framework in the
next section, we will settle with the 1 and 4 monoid.

2.3 Montague Semantics

Montague semantics is a theory of natural language that believes its semantics
can be described thoroughly in terms of standard mathematical models. Logician
Richard Montague (1930-1971) famously wrote

There is in my opinion no important theoretical difference between
natural languages and the artificial languages of logicians; indeed I
consider it possible to comprehend the syntax and semantics of both
kinds of languages with a single natural and mathematically precise
theory. [18]

He believed that just as Chomsky had formulated the syntax of language in
a mathematical framework, so too should it be possible to define the meaning of
every sentence, based on the meaning of its parts and a set of compositional rules.

While the above remains a hot topic in the philosophy of language, we are
going to take a more practical stand. In our quest to automate the translation
of language into Visser’s DPL monoid, it is interesting that Montague was able
to define such a large fragment of English using familiar tools of compositionality
and lambda calculus.

The basic idea is very simple. For each POS-tag we define a type. E.g. S has
the type Bool and V P has the type Entity → Bool, the intuition being that the
VP returns true if the entity ‘does what the VP described’ and false otherwise. An
NP is given type type V P → Bool which allows it to create a scope for a variable
and pass it to the VP, or whatever it sees fitting for that NP.
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The point is that we always give a specific phrase type the same logical type.
This allows our composition rules to know exactly what type each component has.
Here are some more examples:

• Proper noun (John, Oxford): Entity

• One-place predicate constant (farmer, sleeps, walks): Entity → Bool

• Transitive verb (owns, beats): Entity → Entity → Bool

• Attributive adjective (good, intelligent, former): (Entity → Bool)→ (Entity →
Bool)

• Quantifiers/Determiners (a, the, every, no): (Entity → Bool)→ (Entity →
Bool)→ Bool

To translate a sentence like ‘Every farmer beats a donkey’ we first create a
constituent tree [S [NP [DT Every] [NN farmer]] [VP [VBZ beats] [NP [DT a] [NN

donkey]]]].
Next we create objects for the basic elements (a computer would do this re-

cursively, but it is easier for us to do it level by level):

Every, r1 = λxy(1 · 4 · ∃r1 · (xr1) · 4 · 1 · (yr1)) :: (E → B)→ (E → B)→ B

farmer = λx(farmer(x)) :: E → B

beats = λxy(beats(xy)) :: E → E → B

a, r2 = λxy(4 · ∃r2 · (xr2) · 4 · (yr2)) :: (E → B)→ (E → B)→ B

donkey = λx(donkey(x)) :: E → B

Every farmer = λy(1 · 4 · ∃r1 · farmer(r1) · 4 · 1 · (yr1)) :: (E → B)→ B

a donkey = λy(4 · ∃r2 · donkey(r2) · 4 · (yr2)) :: (E → B)→ B

beats a donkey = λz(4 · ∃r2 · donkey(r) · 4 · beats(z, r2)) :: E → B

Until we can then finally compose the top NP and VP to get the sentence:

1 · 4 · ∃r1 · farmer(r1) · 4 · 1 · 4 · ∃r2 · donkey(r2) · 4 · beats(r1, r2)
= 1 · 4 · ∃r1 · farmer(r1) · 4 · 1 · beats(r1, r2) · 4 · ∃r2 · donkey(r2) · 4

You might have noticed we didn’t discuss how the variables r1 and r2 were
assigned. This is of course of utter importance in relation to anaphora resolution.
However in the section 2.5 we will discuss a way out of this problem.

Later in the implementation section we will look at more issues regarding to
using Montague Grammars in practice. First we need to look at a very important
source of ambiguity in sentences.
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2.3.1 Weak and Strong Readings

‘Weak’ and ‘strong’ are quite accepted terms in linguistics for describing different
ways to interpret quantifiers. In line with information theory, we can say that weak
readings are about weak information and strong readings about strong information.

Makoto Kanazawa has written an entire paper on issues with weak and strong
readings of donkey sentences[13]. For our main donkey sentence, we may have at
least the following readings of the second ‘a’:

1. Weak reading: A farmer who owns a donkey beats a donkey he owns.

2. Strong reading: A farmer who owns a donkey beats every donkey he owns

3. Unique reading: A farmer who owns a donkey beats the donkey he owns.

We have equally many readings for the first ‘A’, creating nine possible inter-
pretations. This is because ‘a’ is a very ambiguous quantifier. Other quantifiers
such as ‘every’ and ‘all’ are more clearly defined. ‘Some’ is another example of an
ambiguous quantifier.

Often we can use the context of a sentence to determine which meaning is the
correct one. For example:

Every farmer owns a donkey. It is pink.

Here it is clear that all the farmers share one donkey. Hence perhaps the best
solution to the problem is to generate all possible sentences and let the context
decide which ones survive.

2.4 Dependency Graphs

Dependency graphs are an alternative way of parsing sentences. Where constituent
trees keep the original word order, dependency graphs are allowed to move thing
around in any way they like4. Also dependency graphs don’t have to be trees.

The flexibility of dependency graphs allow them to do a lot of interesting
things. In our favourite example of the donkey and the farmer we had the problem
that there wasn’t a very strong syntactical relationship between ‘farmer’ and ‘he’.
In figure 2 we see how the same sentence would look if parsed with a dependency
parser.

The first thing we notice is that dependency graphs focus on verbs. The verbs
become the heads of the sentences, and everything else becomes the ‘ subject’, ‘the

4Until now we’ve been lucky that things next to each other often were related, but in
some languages other than English, words can jump anywhere they like, and our approach
might fail.
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Figure 2: Dependency graph for ‘If a farmer owns a donkey, he beats it’

object’ or ‘the something else’ of the verb. In our example ‘he beats it’ becomes
an ‘adverbial clause modifier’ of the main verb. This means it modifies the verb,
here in the sense of making the main verb a condition.

Dependency graphs naturally seems to offer more semantic information than
constituent trees, and hence that they would be a good intermediate step towards
our goal of logification. However the first disappointment arise as we start to look
at how they are created.

The Stanford Parser makes dependency graphs using a special kind of regular
expressions for trees called ‘tregex’[3]. It defines tregex rules such as:

NP < NN $ V P (58)

Which means an NP that is the parent of an NN and sister of a VP.
Another more complicated example is:

NP < (NN < dog) $ (V P << #(barks > V BZ)) (59)

Which means an NP over an NN over ‘dog’ and with a sister VP headed by ‘barks’
which is a verb in present singular.

Obviously this means we can’t get any information from the graph that we
couldn’t also get from the tree. In fact it probably contains less. On the flip side
however, the regular expressions are clearly more powerful than simple recursions
as we define them in the Montague grammars.
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I’ve worked hard on trying to define a Montague like set of equations for
English, but over the dependency graph. This has however failed, mostly due to
one simple reason: In a Montague grammar we expect every type of phrase to
have a specific logical type. E.g. all NPs are ‘VP → Bool’ and VPs are ‘Entity →
Bool’. This makes it fit very nice in a programming context, where we can define
a function ‘parseNP :: ConstituentTree → (VP → Bool)’. With the dependency
approach we don’t have this option. A ‘subj’ arrow can mean many different
things. Sometimes it points at a noun, sometimes at a proper noun, sometimes
something else.

In conclusion, Montague like grammars for dependency graphs could be very
interesting to make. It would however require some well defined rules for what we
can expect to find under each type of arrow. This was a blind alley.

2.5 Coreferences

Coreferences (or anaphora) is essential in order to create advanced discourse, since
it is what allows us maintain a topic beyond the first mention. Without corefer-
ences we couldn’t even express simple logical statements such as transitivity: ‘a
man’s brother’s brother is his brother’ etc.

Identifying coreferences (or resolving anaphora) is hence an important part of
converting natural language into logic. The issue is not touched upon in Visser’s
paper, which casually sidesteps the problem by assigning variables to all mentioned
entities.

For the subtask of resolving simple pronouns a solution could be to work in
terms of subjects, objects, indirect objects and so on. However if not earlier, this
certainly fails for pronouns separated from their antecedent by sentence bound-
aries. Also we want to resolve other kinds of coreferences, such as ‘John, the
farmer, owns a donkey’, where ‘the farmer’ and ‘John’ refers to the same entity.

It quickly becomes clear that the problem is not only syntactical. In the
sentence ‘John and his wife had a farm. He took care of the donkeys’ we could
substitute ‘He’ with ‘She’ and to change the referent of the pronoun. In this case
we need semantic knowledge of genders to proceed.

In my project I have taken advantage of the coreference tagger built into Stan-
ford CoreNLP[15][16][22]. In the following section I will summarize the workings
of this machine, made to work across large texts as well as simple sentences.

Coreference tagging is one part of computational linguistics where machine
learning algorithms still haven’t been able to outperform large iterative applica-
tions of linguistic heuristics. Of course the procedure assumes (most likely) ma-
chine learned POS-tagging and named entity recognition, but the main algorithm
is transparent and deterministic.
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The idea is to iteratively go over the text with different ‘sieves’. The below
example explains each step with an example I have adopted from [15]:

John is a farmer. He owned a stubborn donkey. A girl was looking
at the donkey. “It was my favorite,” John said to her.

Mention detection The first step is to identify all noun phrases (NP) and per-
sonal (PRP) and possessive (PRP$) pronouns. This information is easily
pulled from the constituent tree. Notice we also identify nested mentions:

[John]11 is [a farmer]22. [He]33 owned [a stubborn donkey]44.
[A girl]55 was looking at [the donkey]66.
“[It]77 was [[my]99 favorite]88,” [John]10

10 said to [her]11
11.

All mentions are initially assigned to separate entities (entity ids). The
entities are also attached information we can easily pull from the constituent
tree, such as ‘a girl: number: singular, gender: female’ which are used for
the following rules.

Speaker Sieve The purpose of this first sieve is to link self referring pronouns to
speakers. Speakers are identified simply by their connection to verbs such
as ‘say’ and proximity to the quotations. In our case the pronoun ‘my’ gets
linked to ‘John’:

[John]11 is [a farmer]22. [He]33 owned [a stubborn donkey]44.
[A girl]55 was looking at [the donkey]66.
“[It]77 was [[my]19 favorite]88,” [John]910 said to [her]11

11.

In conversational text we would store information about the speakers in our
entities. Thus we could e.g. match mentions of ‘you’ to the speaker of the
previous quote we saw.

We also note restrictions for future use, so we don’t risk coreferencing an ‘I’
with a ‘he’ etc.

String Match The second step is to merge entities referred to by exactly the
same string. In our case we have two mentions of ‘John’:

[John]11 is [a farmer]22. [He]33 owned [a stubborn donkey]44.
[A girl]55 was looking at [the donkey]66.
“[It]77 was [[my]19 favorite]88,” [John]110 said to [her]11

11.

Relaxed String Match This third sieve doesn’t get activated by our example.
It will try to remove relative clauses and other text following the head word
of a mention, and do an exact match of the result. For example [John] and
[John, whose donkey loves him] will correctly be merged.
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Like the ‘String Match’ sieve, we are not doing anything fancy here, and we
will incorrectly coreference the two mentions of ‘John’ in: ‘[John, who loves
donkeys] and [John, who hates donkeys] were brothers.’

Precise Constructs The ‘Precise Constructs’ sieve uses a lot of common pat-
terns that link mentions. In our case two ‘X is Y’ patterns are found:

[John]11 is [a farmer]12. [He]33 owned [a stubborn donkey]44.
[A girl]55 was looking at [the donkey]66.
“[It]77 was [[my]19 favorite]78,” [John]110 said to [her]11

11.

Other patterns include acronyms and appositives. For example [Canadian
Donkey & Mule Association] and [CDMA] are linked, because the second is
tagged as an acronym and it matches the upper case letters of the first one.
An appositive is usually a pattern ‘X, Y, ...’ where Y is another description
of X.

Strict Head Match A, B, C are simply rules strip mentions down to their head
word and try to find exact matches. This is similar to ‘Relaxed String
Match’, but more radical. In our case we correctly get a link between ‘a
stubborn donkey’ and ‘the donkey’:

[John]11 is [a farmer]12. [He]33 owned [a stubborn donkey]44.
[A girl]55 was looking at [the donkey]46.
“[It]77 was [[my]19 favorite]78,” [John]110 said to [her]11

11.

Linking mentions based on their head word is dangerous. e.g. ‘University of
Oxford’ and ‘University of Cambridge’ both have ‘University’ as their head
word, but are (obviously?) different entities. To combat this a lot of strict
rules must be observed. These are however gradually weakened in sieve B
and C.

Proper Head Noun Match could be called ‘Strict Head Match D’. It is the
weakest form of the sieve, as it has only the three constraints: two mentions
of the same entity cannot have one included in the other, they cannot contain
words referring to conflicting geographical locations, and they cannot have
different numbers. e.g. [donkeys] and [at least 5 donkeys].

Pronoun Match This last sieve is perhaps the most important one. It is done
in the end so that we may have as much data in our entities as possible for
matching. Using guesses on gender, number and animacy we can make our
final merges:

[John]11 is [a farmer]12. [He]13 owned [a stubborn donkey]44.
[A girl]55 was looking at [the donkey]46.
“[It]47 was [[my]19 favorite]48,” [John]110 said to [her]511.
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As always there are a few constraints put on what can be merged. One rule
is that the distance between pronoun and antecedent must be maximum 3
sentences.

After the final step different post processing options are usually performed.
For example singleton mentions are often discarded. That would mean we got rid
of ‘a musician’ and ‘my favorite’.

The reason the rules are applied in the order above is to give the most certain
rules the highest priority.

The Stanford procedure above is currently the strongest competitor in various
coreference competitions.[16][22]
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3 Implementation

The requirements for the testing framework are very simple: Support as big a
chunk of English as possible, while keeping to the intended meaning.

Since this program is going to be used for research by computational lin-
guists, easy access to modify the code is more useful than big user interfaces and
parametrization. Our interface is going to be simple text based, with an input file
of text you want translated and a command you run on said file to start producing
logifications.

3.1 Interfacing with Stanford

The Stanford Parser tools provide a rich Java library for interfacing directly with
the system. They have classes for things like constituent trees, dependencies,
coreferences and more. Obviously I couldn’t use any of that. Instead I ran a
simple shell script they include, which outputs the relevant information in XML.

Haskell has a nice XML library in Text.XML.Light. However the constituent
found by the parser were not actually in XML, but in a simple plain text format.
To parse this I wrote my own parser using the great monadic Parsec library.

The next step for my code was to tag the relevant tree leafs with correct
variable names, so it could go into the Montague code. As stated before the
Stanford tool chain provided me with coreference tagging, but unfortunately not
in a great format for my needs. If a sentence said ‘A man and a dog, they had a
shower’, it would assign the same ‘mention’ to ‘a man’ and ‘a dog’, but nothing
to ‘a shower’. Luckily Haskell is quite good at such tree manipulation. One thing
I made sure was that I always use distinct variables so I never have to perform
α-conversion.

One major issue with the Stanford tools is the fact that they are very slow.
It uses less than a second per input text, but actually starting the program takes
more than two minutes. This is due to the suite loading large compressed files
of language statistics into RAM. This issue is the reason my program works with
batches of inputs.

3.2 Syntax and Semantics

An interesting issue is the fact that we deal with 4 types of logic. Each having a
syntactic and semantic part. That means we have 8 kinds of truth (>), 8 kinds
of implication, 8 kinds of everything. And this is with only two Donkey Monoids
implemented.

The mentioned types are the following:
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data Fol = T | F | ...
type IFol = Interpretation → Bool

data Dpl = DT | DF | ...
type IDpl = Interpretation → Assignment → Assignment → Bool
type IDpl2 = Interpretation → Assignment → [Assignment]

data Visser1 = VT | VF | ...
type IVisser1 = (Dpl, Dpl, Integer)
data Visser2 = VT | VF | ...
type IVisser2 = (Dpl, Dpl, Dpl, Dpl, Integer, Integer)

Notice that DPL has two possible interpretations5. None of these are actually
used in the final program, but they serve well to test this middle layer of the
program.

For each syntactic type I’ve defined a number of functions:

‘simplify’ which takes a formula of the given syntactic type and repeatedly ap-
plies a number of identities thought to simplify the logic6.

‘tex’ and ‘pretty’ which prints the formula in either TEXor Unicode format. It’s
in a way main part of the program’s user interface. Hence I have taken extra
care to make sure it has visually pleasing bracketing.

‘int’ which converts the formula to its semantic counterpart. There are also in-
terpretation functions that interpret a logic in the logic ‘below’ it, hence
creating one directional conversion functions.

In terms of the semantic types we have to be careful. Types such as ‘Inter-
pretation → Bool’ forgets to allow for basic ‘errors’ such as references to unbound
variables. For FOL we can check this statically and not allow the syntax, but for
a DPL sentence (∃x · P (x) ∪ ∃y) ·Q(x) the existence of x in Q(x) depends on the
value of P (x).

One option in case of an error is to simply return ⊥ and say the formula eval-
uated to false, but perhaps we want to distinguish the cases. I have experimented
with a lot of types, such as ‘Interpretation → Maybe Bool’, which can return the
value ‘Nothing’ in case of an error. It doesn’t make the formulas any nicer though.
If we decide to even implement Visser’s ‘many world’ semantics as discussed ear-
lier, we get absolutely terrible formulas that don’t honor the simplicity of the logic
in any way.

5This is more of curiosity due to the fact that a DPL formula is a relation between two
assignments, and that an assignment can either be thought of as a set of pairs: P (DV ×DV )
or a function from type X to a set of type X: DV → P (DV ). The first one is nice for
proofs, but the second one has a nice and short programmatic definition.

6This is extra important because the conversion of Donkey Monoids into DPL and DPL
into FOL creates a lot of ‘dummy’ >s.
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In the current version of my program, I have decided to go with the simplest
possible type, and simply report errors through Haskell’s error system.

3.3 The Grammar

Once I have sculpted the input text into a nice tree shape7, I parse it to my
‘Montague’ function. As I described in the early chapters, this applies a set of
rules recursively to create a formal interpretation.

Now, since Montague grammars have been around for a long time, and used in
commercial machine translating systems from the 70ies and 80ies, you would think
the web was would be flooded with code and long machine readable lists of rules I
could use to bootstrap my system. This doesn’t seem to be the case. Perhaps this
is due to people abandoning this approach for vector models before the internet
had really picked up the speed of today.

Some people are however wondering if there might still be things to learn from
Montague’s approach, like Groendijk & Stokhof in Dynamic Montague Grammar[9]:

‘... we are convinced that the capacities of [Montague Grammar]
have not been exploited to the limit, that sometimes an analysis is
carried out in a rival framework simply because it is more fashionable’

Nonetheless, while that particular paper does have some interesting lists, it
is worrying that not even Montague’s original papers supply more than a few
examples.

This means that nearly all of the rules I shall present are of my own creation.
Because these rules are tested in practice on a large set of English sentences, they
will hopefully avoid some simple mistakes and oversights that are easy to make in
purely theoretical settings. It seems like a good approach to start from a small
working fragment, and slowly add more phrase rules and sentences. The opposite
of this approach is what is often observed when logicians and philosophers go astray
in very abstract corners of English, without having covered the basic ground.

The following describes the set of rules I use in my program:
Let φ, ψ, ω be lists of phrase nodes, let α, β, γ leaf nodes. Then we can define

a set of interpretation functions J·Ktype from phrase nodes to logic:

7I use the type ‘PosTree IWord’ where:
data PosTree a = P PosTag [PosTree a] | L PosTag a
type IWord = (Word, Index)
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J(Sφ)ψKROOT := JφKS · JψKROOT

J(NPφ)ψKROOT := JφKNP(λx.>) · JψKROOT

J(NPφ)(VPψ)KS := JφKNPJψKVP

J(Sφ)(CCand)(Sψ)KS := JφKS · JψKS

J(SBAR(INif)(Sφ))(,, )ψKS := ?0(1 · JφKS · 1 · ?1(JψKS))

J(PRPe)KNP := λv.ve

where e is a predetermined variable name
J(DTα)(NNβ)KNP := λv.JαKDTJβKNNv

J(DTα)(NNβ)(CCand)(NNγ)KNP := λv.JαKDT(λy.JβKNNy · JγKNNy)v
J(NPφ)(CCand)(NPψ)KNP := λv.JφKNP(λx.JψKNP(λy.∀z.z = x ∨ z = y → vz))

where z is a globally free variable

Ja, eKDT := Jsome, eKDT := λvw.4 · ∃e · ve · 4 · we
Jall, eKDT := Jevery, eKDT := λvw.?0(1 · 4 · ∃e · ve · 4 · 1 · we)

Jno, eKDT := λvw.?0(1 · ∃e · ve · we · 1 · ⊥)
Jthe, eKDT := λvw.we

J(VBα)KVP := JαKVB

J(VBα)(NPφ)KVP := λx.JφKNP(JαKTVBx)
J(VPφ)(CCand)(VPψ)KVP := λx.JφKVPx · JψKVPx

J(VBα)(CCand)(VBβ)(NPφ)KVP := λx.JφKNP(λy.JαKTVBxy · JβKTVBxy)
J(VBdo)(RBnot)(VPφ)KVP := λx.?0(1 · JφKVPx · 1 · ⊥)

The mentioned ‘Montague’ function basically passes the tree to J·KROOT and
does a bit of cleaning of the result.

3.4 Machine Learning

Machine Learning is one gaping hole we haven’t mentioned in this paper. Obvi-
ously something as dynamic as natural language we can never just define a set of
rules like we did above. Programming a computer to learn a set of rules like that
is unfortunately not something much research has gone into, and so no large banks
of input/output pairs exist to learn from.

Another idea for logification using machine learning is to entirely skip the
Montague step. The 1 and 4 monoid makes logic look close enough to natural
language, that it starts to become tempting utilizing machine learning methods
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from translation. Unfortunately this idea runs into the same barrier as the above:
that for supervised learning, we first need a large base of already translated sen-
tences.

3.5 Testing

In the previous sections we have tried to be as formal and careful as possible in
our derivations and proofs, but as Knuth famously said:

‘Beware of bugs in the above code; I have only proved it correct,
not tried it.’

In the actual implementation of my program I have used the QuickCheck and
HUnit test environments to write unit tests for algebraic properties and actual
inputs to my program. To enable QuickTest to test the different preparation
algorithms on constituent trees, I implemented a random generator8.

What remains to test is the validity of the Montague grammar introduced in
the previous section. As reasonable as it seems we want to reduce the likelihood
of it containing conflicting definitions. In a transformation grammar over natural
language we are always running the risk of have been too narrow sighted in its
definition. The classic example being ‘(DTa)’ interpreted as ∃, but then actually
being an ∀ if used in an ‘if’ phrase.

In DPL we don’t have that particular problem, but instead we can run into
problems with the way the scopes of composed elements affect each other. In
Visser logic it is even worse, as 1s and 4s can teleport elements introduced much
later in the discourse far around the final statement.

Hence, as reasonable as the introduced grammar seems, we want to reduce the
likelihood of conflicts as much as possible. Until now we have been very focused on
the same one or two simple sentences, or whatever sentences were relevant to the
features we were discussing, but now we are going to introduce a much larger set
of complicated test cases. Ideally we want test cases for testing every combination
of grammar rules imaginable.

In the test of this program, we used a branch of 53 sentences. Some copied
from the papers referenced, others invented based on features considered or the
daily life of farmers and donkeys as imagined by the author. The sentences were
converted to Visser, DPL and FOL, and the meanings were checked manually to
make sense. See appendix 6.3 for the raw program output.

8In conclusion QuickTest wasn’t as useful as I had hoped, since defining my functions
as properties to be tested, required far more code than the functions themselves.
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In the following section we will run through the most interesting sentences
used, and hopefully make it a bit clearer how the different steps of translation
work.

3.5.1 A Bunch of Examples

In this section we translate 12 sentences from English to the Visser logic to DPL
and finally to FOL as described in the earlier sections.

The sentences are all simplified through a number of syntactical identities
defined for each language. The purpose of this is only to improve readability.

1. Let’s start up with a very sequential example to showcase the strength of
DPL. Notice how the sentences are easily concatenated with no need for
scope handling.

English A man comes in. He sees a donkey. He smiles.
Visser 4 · ∃a ·man(a) · 4 · come in(a) · 4 · ∃b · donkey(b) · 4 · see(a, b) · smile(a)
DPL ∃a ·man(a) · ∃b · donkey(b) · come in(a) · see(a, b) · smile(a)
FOL ∃a(man(a) ∧ ∃b(donkey(b) ∧ come in(a) ∧ see(a, b) ∧ smile(a)))

2. Now let’s try a real donkey sentence. Notice how in this case the program
chooses the weak reading of ‘some donkey’.

English Every farmer beats some donkey.
Visser 1 · 4 · ∃a · farmer(a) · 4 · 1 · 4 · ∃b · donkey(b) · 4 · beat(a, b)
DPL ∃a · farmer(a)→ ∃b · donkey(b) · beat(a, b)
FOL ∀a(farmer(a)→ ∃b(donkey(b) ∧ beat(a, b)))

3. We can also handle cases where ‘a farmer’ is introduced inside the antecedent
of an ‘if’.

English If a farmer owns a donkey, he beats it
Visser 1 · 4 · ∃a · farmer(a) · ∃b · donkey(b) · 4 · own(a, b) · 1 · beat(a, b)
DPL ∃a · farmer(a) · ∃b · donkey(b) · own(a, b)→ beat(a, b)
FOL ∀a(farmer(a)→ ∀b(donkey(b) ∧ own(a, b)→ beat(a, b)))
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4. This is an example from Visser [27] containing sentences with no verbs.
Notice how the Visser logic has to introduce ?0 to prevent the antecedent
from becoming part of the consequent.

English A farmer. A Donkey. If he owns it, it is beaten.
Visser 4 · ∃a · farmer(a) · ∃b · donkey(b) · 4·?0(1 · own(a, b) · 1 · beat(b))
DPL ∃a · farmer(a) · ∃b · donkey(b) · (own(a, b)→ beat(b))
FOL ∃a(farmer(a) ∧ ∃b(donkey(b) ∧ (own(a, b)→ beat(b))))

?0 however only scopes off the consequent ‘channel’ of the monoid. Hence
this more complicated example also works as expected.

English If a farmer owns a donkey, he beats it.
If he rewards it, he doesn’t own it.

Visser ?0(1 · 4 · ∃a · farmer(a) · ∃b · donkey(b) · 4 · own(a, b) · 1 · beat(a, b))
·?0(1 · reward(a, b) · 1·?0(1 · own(a, b) · 1 · ⊥))

DPL ∃a · farmer(a) · ∃b · donkey(b)→
(own(a, b)→ beat(a, b)) · (reward(a, b)→ ¬own(a, b))

FOL ∀a(farmer(a)→ ∀b(donkey(b)→
(own(a, b)→ beat(a, b)) ∧ (reward(a, b)→ ¬own(a, b))))

5. A big consequence of/decision in the grammar created, is that no new entities
can be introduced in the ‘then part’ of an ‘if’. The reason for this is that
such objects are not guaranteed to exist on the ground of the sentence. We
enforce this rule using the ?1 function.

English If a farmer owns a donkey, he owns a horse.
If he doesn’t own it, he owns a cow.

Visser ?0(1 · 4 · ∃a · farmer(a) · ∃b · donkey(b) · 4 · own(a, b) · 1
·?1(4 · ∃c · horse(c) · 4 · own(a, c)))·
?0(1·?0(1 · own(a, b) · 1 · ⊥) · 1·?1(4 · ∃d · cow(d) · 4 · own(a, d)))

DPL ∃a · farmer(a) · ∃b · donkey(b)→ (own(a, b)→ ∃c · horse(c) · own(a, c))
· (¬own(a, b)→ ∃d · cow(d) · own(a, d))

FOL ∀a(farmer(a)→ ∀b(donkey(b)→ (own(a, b)→ ∃c(horse(c) ∧ own(a, c)))
∧ (¬own(a, b)→ ∃d(cow(d) ∧ own(a, d)))))

33



6. Because of the doubtful semantic meaning of disjunctive sentences discussed,
I have instead chosen to focus on conjunctive problems. And there are a lot
of those too. The first one is a case of a conjunctive VP. Notice that we treat
‘starves’ as a transitive verb, even though the sentence is clearly ambiguous.
In this case the phrase parser makes the decision for us.

English A farmer starves a horse and beats a donkey.
Visser 4 · ∃a · farmer(a) · ∃b · horse(b) · 4 · starve(a, b)

· 4 · ∃c · donkey(c) · 4 · beat(a, c)
DPL ∃a · farmer(a) · ∃b · horse(b) · ∃c · donkey(c) · starve(a, b) · beat(a, c)
FOL ∃a(farmer(a) ∧ ∃b(horse(b) ∧ ∃c(donkey(c) ∧ starve(a, b) ∧ beat(a, c))))

7. In Montague’s PTQ[19] he doesn’t give rules for conjunction of NPs, but only
sentences and VP’s. In [24] and [20] Mats Rooth and Barbara Partee discuss
different issues arising, but never reach any usable construction. Personally
I’ve found the below to be very useful for conjunctive NPs that act as a
union.

English All donkeys and a horse sing a song.
Visser 1 · 4 · ∃a · donkey(a) · 4 · 1 · 4 · ∃b · horse(b) · 4

·?0(1 · ∃c · eq on of(c, a, b) · 1 · 4 · ∃d · song(d) · 4 · sing(c, d))
DPL ∃a · donkey(a)→ ∃b · horse(b) · ∃d · song(d)

· (∃c · eq on of(c, a, b)→ sing(c, d))
FOL ∀a(donkey(a)→ ∃b(horse(b) ∧ ∃d(song(d)

∧ ∀c(eq on of(c, a, b)→ sing(c, d)))))

8. This is a more simple example of a conjunctive NN.

English Some farmer and entrepreneur owns a donkey.
Visser 4 · ∃a · farmer(a) · entrepreneur(a) · ∃b · donkey(b) · 4 · own(a, b)
DPL ∃a · farmer(a) · entrepreneur(a) · ∃b · donkey(b) · own(a, b)
FOL ∃a(farmer(a) ∧ entrepreneur(a) ∧ ∃b(donkey(b) ∧ own(a, b)))

9. The great thing about the construct introduced for conjunctive NPs is that
it also works well when we need a cross product of subjects and objects, as
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this example shows.

English A man and a woman owned a horse and a donkey.
If the donkey did not walk, and the man was a farmer, he beat it.

Visser 4 · ∃a ·man(a) · ∃b · woman(b) · 4·?0(1 · ∃c · eq on of(c, a, b) · 1
· 4 · ∃d · horse(d) · ∃e · donkey(e) · 4·?0(1 · ∃f · eq on of(f, d, e) · 1
· own(c, f)))·?0(1·?0(1 · walk(e) · 1 · ⊥) · a farmer(a) · 1 · beat(a, e))

DPL ∃a ·man(a) · ∃b · woman(b) · ∃d · horse(d) · ∃e · donkey(e)
· (∃c · eq on of(c, a, b) · ∃f · eq on of(f, d, e)→ own(c, f))
· (¬walk(e) · a farmer(a)→ beat(a, e))

FOL ∃a(man(a) ∧ ∃b(woman(b) ∧ ∃d(horse(d) ∧ ∃e(donkey(e)
∧ ∀c(eq on of(c, a, b)→ ∀f(eq on of(f, d, e)→ own(c, f)))
∧ (¬walk(e) ∧ a farmer(a)→ beat(a, e))))))

10. Finally it is interesting to see how the program handles pronouns. I’ve chosen
to make ‘free pronouns’ not be an error, but a feature. Free pronouns are
treated as free variables, which allow you to create sentences that might be
use e.g. to filter a database.

English She is a mother of five
Visser a mother of five(a)
DPL a mother of five(a)
FOL a mother of five(a)

11. The following sentence is very similar to the original donkey sentences, but
it features a free variable.

English If a farmer owns it and he beats it, it is a donkey
Visser 1 · 4 · ∃a · farmer(a) · 4 · own(a, b) · beat(a, b) · 1 · a donkey(b)
DPL ∃a · farmer(a)→ (own(a, b) · beat(a, b)→ a donkey(b))
FOL ∀a(farmer(a) ∧ own(a, b) ∧ beat(a, b)→ a donkey(b))

12. A final example that really shows how DPL scope and free variables all play
along together is this the case of a ‘non existent’ antecedent. The Stanford
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Coreference tagger mistakenly tags the two men in this sentence as the same,
but because negation creates a closed scope, the final sentence still comes
out right.

English No man walks in the park. He yodels.
Visser ?0(1 · ∃a ·man(a) · walk in the park(a) · 1 · ⊥) · yodel(a)
DPL ¬(∃a ·man(a) · walk in the park(a)) · yodel(a)
FOL ∀a(man(a)→ ¬walk in the park(a)) ∧ yodel(a)

This concludes the implementation part of the paper.
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4 Conclusions

I have successfully developed a testing framework that lets researchers define logics
and interpretation functions and test them on large inputs of interesting text. I
have discussed many possible directions I could have taken, I have proved every
result involved, and I have done extensive testing.

My program can correctly logify entire paragraphs of text containing advanced
anaphora, conjunctive nouns, verbs and adjectives, implications and scoping. In
some cases the my defined rules create quite creative FOL formulas that would
likely have taken a person a few tries to get right. In addition to factual sentences
my program also handles query type sentences with free variables.

My fragment of English is however quite limited to the extent that most sen-
tences require some adaption to pass through. Word classes such as adverbs and
plurals are not supported, and in some cases my framework supports a sentence,
but logification still fails due to shortcomings in the Stanford toolkit. For example
in ‘Every dog sees a cat. It chases it.’ where the anaphora doesn’t get resolved,
and ‘Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo’[23] that also
manages to slightly confuse the parser.

My tests of Visser’s Donkey Monoids show that they can be used for automatic
logification, but that they lose some of their charm. Mainly it seems that the 1
and 4 switches are a bit too strong, and hence require extensive use of the scoping
function ?(·). At least the rules I came up with essentially uses Donkey Monoids
as if they were DPL.

My tests also show that the Montague grammar can be made very simple when
implemented using dynamic logics. I couldn’t however entire eliminate the need
for lambda calculus, but perhaps a more refined Donkey Monoid will be up for the
challenge.

4.1 Future work

I had a lot of issues with the Stanford Parser not being able to parse sentences
correctly. In every paper I have read, this part always ‘just works’, but I didn’t
have any options, but to discard the sentence. It would be interesting to make
a fault tolerant logification system. Perhaps some knowledge from the semantics
could be passed back to the syntax parser for better results.

It would also be interesting to return more than one result in the case of ambi-
guity. We have seen how weak and strong readings of the actors in the sentences
can give very different results. Also conjunction of transitive verbs like ‘A farmer
starves and beats a donkey’ are inherently ambiguous. Perhaps if we returned
many possible logifications for each sentence, we could take the intersection to get
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the real meaning.
In terms of expanding the scope of our translations, the fruits I have identified

are hanging at different heights:
At the lowest level there are a lot of trivial additions. Support in more cases

for more negatives like ‘no’ and ‘nobody’ hasn’t been explored well. Possessive
pronouns is something I’ve struggled with, but if we accept that ‘He took his jacket’
translates to ∃y · owns(x, y) · jacket(y) · took(x, y) it shouldn’t be hard. Also there
are things like ‘existential there’ and more kinds of SBARs like started by ‘then’,
‘whom’ etc. that we can add, but for the expense of additional complicated rules.

Higher up are things like adverbs. This will require a more complicated treat-
ment of predicates to hopefully allow something like furiously(beat(x, y)). How
exactly these things can be logified is still an open question in linguistics. Another
fruit at this level is model verbs. Sentences like ‘It rains. It might rain’ and ‘It
might rain. It rains’ should be treated differently. For this we could look into the
field of modal logics.

Even higher up are lots of classical linguistic problems. Sentences such as ‘The
golden mountain does not exist’, ‘The ancient Greeks thought the morning star
was the evening star’ have had entire papers written on them, without any definite
answers. Probably we’ll have to consider the use case to know how a well defined
computational logic should work. Another thing at the top level is novel words
and sentence structures. These will clearly require some sort of machine learning.

Finally I have mentioned that we might be able to expand the Donkey Monoids
with more functionality as we sees fit during Montague rule making. The possibility
for pushing control elements into the semantic of the logic is really the beauty
of Visser’s approach and unfortunately a road I haven’t studied much in this
paper. It is not hard to imagine (Dpl,Dpl,Dpl,Dpl, Integer, Integer) exchanged
for something like (Dpl, . . . , PosTag) and corresponding composition rules.
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6 Appendix

6.1 The Problem with Disjunction

A major problem with our use of the union of relations as disjunction is the way
it allows seemingly sound sentences to combine into syntactically invalid ones.
Consider the sentence ‘Either a farmer owns a donkey or he doesn’t’. We would
write that as

∃x · farmer(x) · (∃y · owns(x, y) · donkey(y) ∨ ⊥) (60)

Now concatenating this sentence with ‘he beats it’: beat(x, y) would give us a
problem. In fact this problem would be more than a syntactic problem, because
before we know the model and the existence of the donkey, we don’t know if the
sentence is valid or not.

Visser[27] suggests that we should build our logic on sets of relations read dis-
junctively instead of just relations. This ‘possible world’ scenario would transform
(60)·beats(x, y) into {∃x · farmer(x) · ∃y · donkey(y) · owns(x, y) · beats(x, y), ∃x ·
farmer(x) · ⊥ · beats(x, y)} = {∃x · farmer(x) · ∃y · donkey(y) · owns(x, y) ·
beats(x, y),⊥}. This clearly is always well defined.

Visser’s idea doesn’t fully save us though. If we now consider ‘a farmer either
owns a donkey or owns a horse’:

∃x · farmer(x) · (∃y · owns(x, y) · donkey(y)
∨ ∃z · owns(x, z) · horse(z)) (61)

And combines that with ‘He beats the donkey’: beat(x, y), we get, in Visser’s
model, {∃x · farmer(x) · ∃y · owns(x, y) · donkey(y) · beats(x, y), ∃x · farmer(x) ·
∃z · owns(x, z) ·horse(z) · beats(x, y)}. The second one is clearly not valid (though
we wouldn’t get a problem if there is no horse or farmer) which we might catch ‘at
compile time’ and replace it with something like ‘⊥’ or ‘error’. This sort of error
handling is discussed and implemented in the implementation section, but is not
terribly interesting from a formal point of view.

Much more interesting are the following two questions: How could we have
translated so it would actually work? After all it seemed like a reasonable sentence
until variable naming got us. And does the way variable binding works with our
definition actually make sense?

Clearly just renaming z to y in the horse term would have solved the first
problem. However to work in a compositional way, that would either require great
luck, or renaming, and we don’t have a renaming operator.
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A trick we could consider is to declare an ‘object’ variable outside of the dis-
junction:

∃s · farmer(s) · ∃o · (∃y · owns(s, y) · donkey(y) · o = y

∨ ∃z · owns(s, z) · horse(z) · o = z) · beats(s, o) (62)

This even inspires on idea that we might be able to build everything up around
subjects, objects, indirect objects etc. This is explored in the implementation,
but it does suffer from many problems. E.g. we might well have a sentence very
similar to the above: ‘A farmer owns a donkey and owns a horse. He beat them’.
Here we suddenly have two objects in the same sentence.

Sentences like the above are easy to make in English because the absence of
noun genders make it easy to use the same pronoun to refer to a lot of things
at once. By choosing the right actors however, it is always possible to run into
problems.

The problem is perhaps the non-linearity in the way variables pass through the
disjunction. Somehow we lose track of their history when the ‘results’ are merged
together.

This leads on to the other question we mentioned: Is the binding flow through
our disjunction operator really any good? We are is inspired by the sentence
‘Either a farmer or his scapegoat must go to court. In any case he will be picked
up by sunset’. In terms of DPL formulas, this would be modelled something like
(ψ1 ∪ ψ2) · ψ3. Clearly we have a problem here: Variables bound in ψ1 are not
accessible in ψ2.

This sentence suggests that we might want to define a disjunction operator
with a linear flow of variables: ψ1 → ψ2 → ψ3 instead of ψ1 → ψ3 and ψ2 → ψ3.
However there is a problem: We currently define ‘false’ as the absence of possible
assignments. Hence if ψ1 is false, there is no way we can define disjunction to push
its variables into ψ2. If any variables were left undefined, ψ1 wouldn’t be false.

There is a cure to this problem. When we extend our logic with more power in
the monoid chapter, we get a second chance. However let’s first have a look at an
obvious alternative definition for disjunction considered by Groenendijk[8]. We’ll
call it ‘static disjunction’:

α[ψ1 ∨ ψ2]β :≡ α[¬(¬ψ1 ∧ ¬ψ2)]β (63)
↔ α[¬ψ1 → ψ2]β
↔ α = β ∧ ∀γ(α[¬ψ1]γ → γ |= [ψ2])
↔ α = β ∧ ∀γ((α = γ ∧ γ 6|= ψ1)→ γ |= [ψ2])
↔ α = β ∧ ∀γ(α = γ → (γ |= ψ1 ∨ γ |= ψ2))
↔ α = β ∧ (α |= ψ1 ∨ α |= ψ2) (64)
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The idea to this follows naturally from De Morgan’s laws of classical logic.
Clearly the semantics are different from the ones we defined for ∪. However not
in a good way. This static disjunction doesn’t allow any variables to escape from
inside its reach.

So does this fix our problem of binding between clauses? No. In fact this
definition doesn’t even allow binding from a clause and out. The villain is ¬ψ.
From the first mention we defined it to be static so it wouldn’t allow unsafe,
arbitrary assignments as long as they didn’t satisfy ψ. We wanted our logic to be
reasonably monotonic, and we got what we deserved. ¬ not only closed down this
version of disjunction, but our implication definition as well.

We can imagine defining ¬ dynamically: ¬ψ1 · ψ2 = ¬(ψ1 · ψ2). However not
in our current model, and it won’t solve any of our problems with disjunction. It
does however allow this sentence: ‘It is not the case that a farmer doesn’t own a
donkey. He beats it’. While it made sense not to allow variables to escape from a
single ¬, we want them to escape from a double.

6.2 Derivation of DPL Preconditions

Remember that we have defined, for assignments α and β, DPL formula ψ and
FOL formula φ: α |= 〈ψ〉φ to mean ∃β(αJψKβ ∧ β |= φ). α |= φ is just the usual
|= from FOL.

Since the proof is over the syntax of DPL, we use J·K as the interpretation
function so that αJψKβ is the FOL statement ‘(α, β) ∈ Ψ’, where Ψ is the relation
defined by ψ.

Let’s start out with the most tricky derivation. How does the resetting, unbounded
∃ of DPL translate into the defining, bounded ∃ of FOL?

α |= 〈∃x〉φ↔ ∃β(αJ∃xKβ ∧ β |= φ)
This is the definition from the DPL chapter:
↔ ∃β(∀ω(ω 6= x→ αω = βω) ∧ β |= φ)

The trick is this switch to assignments:
↔ ∃β(∃ν(∀ω(α[x := ν]ω = βω)) ∧ β |= φ)
↔ ∃β(∃ν(α[x := ν] = β) ∧ β |= φ)
↔ ∃ν(∃β(α[x := ν] = β ∧ β |= φ))

Here we apply the |= definition:
↔ ∃ν(α[x := ν] |= φ)
↔ α |= ∃x(φ) (33)
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Where we have taken α[x := ν] to mean the α with αx assigned to the value of ν.
The derivation for · goes more smoothly:

α |= 〈ψ1 · ψ2〉φ↔ ∃β(αJψ1 · ψ2Kβ ∧ β |= φ)
↔ ∃β(∃γ(αJψ1Kγ ∧ γJψ2Kβ) ∧ β |= φ)
↔ ∃γ(αJψ1Kγ ∧ ∃β(γJψ2Kβ ∧ β |= φ))
↔ ∃γ(αJψ1Kγ ∧ γ |= 〈ψ2〉φ)
↔ α |= 〈ψ1〉〈ψ2〉φ (34)

∪ interestingly doesn’t translate to 〈ψ1 ∨ ψ2〉φ as we might have expected:

α |= 〈ψ1 ∪ ψ2〉φ↔ ∃β(αJψ1 ∪ ψ2Kβ ∧ β |= φ)
↔ ∃β((αJψ1Kβ ∨ αJψ2Kβ) ∧ β |= φ)
↔ ∃β(αJψ1Kβ ∧ β |= φ) ∨ ∃β(αJψ2Kβ ∧ β |= φ)
↔ (α |= 〈ψ1〉φ) ∨ (α |= 〈ψ2〉φ)
↔ α |= 〈ψ1〉φ ∨ 〈ψ2〉φ (35)

For predicates it’s mostly a matter of juggling variables, values and assignments:

α |= 〈P (x1, . . . , xn)〉φ↔ ∃β(αJP (x1, . . . , xn)Kβ ∧ β |= φ)
↔ ∃β(α = β ∧ P (αx1 , . . . , αxn) ∧ β |= φ)
↔ P (αx1 , . . . , αxn) ∧ α |= φ

↔ α |= P (x1, . . . , xn) ∧ φ (36)

¬ is interesting because it has to create a scope:

α |= 〈¬ψ〉φ↔ ∃β(αJ¬ψKβ ∧ β |= φ)
↔ ∃β(α = β ∧ ¬∃γ(αJψKγ) ∧ β |= φ)
↔ ¬∃γ(αJψKγ) ∧ α |= φ

↔ ¬∃γ(αJψKγ ∧ γ |= >) ∧ α |= φ

↔ α 6|= 〈ψ〉> ∧ α |= φ

↔ α |= ¬〈ψ〉> ∧ φ (37)

43



Because ψ is this way ‘evaluated on > only’, we know that no variables introduced
in ψ can affect φ. The derivation of ∨ can be done from the previous results alone:

〈ψ1 ∨ ψ2〉φ ≡ 〈¬(¬ψ1 · ¬ψ2)〉φ by (63)
≡ ¬〈¬ψ1 · ¬ψ2〉> ∧ φ by (37)
≡ ¬〈¬ψ1〉〈¬ψ2〉> ∧ φ by (34)
≡ ¬〈¬ψ1〉(¬〈ψ2〉>) ∧ φ by (37)
≡ ¬(¬〈ψ1〉> ∧ ¬〈ψ2〉>) ∧ φ by (37)
≡ (〈ψ1〉> ∨ 〈ψ2〉>) ∧ φ by (63)

(38)

6.3 Sample Output

$ ./run.sh inputs
Running Stanford Parser...
java -mx3g -cp "../stanford-corenlp-full-2012-11-12/*" edu.stanford.nlp.pipeline.

StanfordCoreNLP -outputDirectory /tmp -filelist /tmp/donkey_inputlist
Searching for resource: StanfordCoreNLP.properties
Searching for resource: edu/stanford/nlp/pipeline/StanfordCoreNLP.properties
Adding annotator tokenize
Adding annotator ssplit
Adding annotator pos
Loading default properties from tagger edu/stanford/nlp/models/pos-tagger/english-

left3words/english-left3words-distsim.tagger
Reading POS tagger model from edu/stanford/nlp/models/pos-tagger/english-left3words/

english-left3words-distsim.tagger ... done [6.1 sec].
Adding annotator lemma
Adding annotator ner
Loading classifier from edu/stanford/nlp/models/ner/english.all.3class.distsim.crf.

ser.gz ... done [13.3 sec].
Loading classifier from edu/stanford/nlp/models/ner/english.muc.7class.distsim.crf.

ser.gz ... done [11.6 sec].
Loading classifier from edu/stanford/nlp/models/ner/english.conll.4class.distsim.crf.

ser.gz ... done [19.1 sec].
Initialization JollyDayHoliday for sutime
Reading TokensRegex rules from edu/stanford/nlp/models/sutime/defs.sutime.txt
Reading TokensRegex rules from edu/stanford/nlp/models/sutime/english.sutime.txt
May 18, 2013 10:48:01 PM edu.stanford.nlp.ling.tokensregex.CoreMapExpressionExtractor

appendRules
INFO: Ignoring inactive rule: temporal-composite-8:ranges
Reading TokensRegex rules from edu/stanford/nlp/models/sutime/english.holidays.sutime

.txt
Adding annotator parse
Loading parser from serialized file edu/stanford/nlp/models/lexparser/englishPCFG.ser

.gz ... done [3.1 sec].
Adding annotator dcoref

Processing file /tmp/donkey_input0 ... (writing to /tmp/donkey_input0.xml) [2.959
seconds]

Processing file /tmp/donkey_input1 ... (writing to /tmp/donkey_input1.xml) [0.268
seconds]
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Processing file /tmp/donkey_input2 ... (writing to /tmp/donkey_input2.xml) [1.216
seconds]

Processing file /tmp/donkey_input3 ... (writing to /tmp/donkey_input3.xml) [0.431
seconds]

Processing file /tmp/donkey_input4 ... (writing to /tmp/donkey_input4.xml) [0.994
seconds]

Processing file /tmp/donkey_input5 ... (writing to /tmp/donkey_input5.xml) [0.640
seconds]

Processing file /tmp/donkey_input6 ... (writing to /tmp/donkey_input6.xml) [1.576
seconds]

Processing file /tmp/donkey_input7 ... (writing to /tmp/donkey_input7.xml) [0.965
seconds]

Processing file /tmp/donkey_input8 ... (writing to /tmp/donkey_input8.xml) [0.774
seconds]

Processing file /tmp/donkey_input9 ... (writing to /tmp/donkey_input9.xml) [1.216
seconds]

Processing file /tmp/donkey_input10 ... (writing to /tmp/donkey_input10.xml) [6.559
seconds]

Processing file /tmp/donkey_input11 ... (writing to /tmp/donkey_input11.xml) [0.652
seconds]

Processing file /tmp/donkey_input12 ... (writing to /tmp/donkey_input12.xml) [0.450
seconds]

Processing file /tmp/donkey_input13 ... (writing to /tmp/donkey_input13.xml) [0.133
seconds]

Processing file /tmp/donkey_input14 ... (writing to /tmp/donkey_input14.xml) [0.176
seconds]

Processing file /tmp/donkey_input15 ... (writing to /tmp/donkey_input15.xml)
Processing file /tmp/donkey_input16 ... (writing to /tmp/donkey_input16.xml) [0.491

seconds]
Processing file /tmp/donkey_input17 ... (writing to /tmp/donkey_input17.xml) [0.144

seconds]
Processing file /tmp/donkey_input18 ... (writing to /tmp/donkey_input18.xml) [0.240

seconds]
Processing file /tmp/donkey_input19 ... (writing to /tmp/donkey_input19.xml) [0.156

seconds]
Processing file /tmp/donkey_input20 ... (writing to /tmp/donkey_input20.xml) [0.230

seconds]
Processing file /tmp/donkey_input21 ... (writing to /tmp/donkey_input21.xml)
Processing file /tmp/donkey_input22 ... (writing to /tmp/donkey_input22.xml) [0.286

seconds]
Processing file /tmp/donkey_input23 ... (writing to /tmp/donkey_input23.xml) [0.331

seconds]
Processing file /tmp/donkey_input24 ... (writing to /tmp/donkey_input24.xml) [0.110

seconds]
Processing file /tmp/donkey_input25 ... (writing to /tmp/donkey_input25.xml) [0.236

seconds]
Processing file /tmp/donkey_input26 ... (writing to /tmp/donkey_input26.xml)
Processing file /tmp/donkey_input27 ... (writing to /tmp/donkey_input27.xml) [0.153

seconds]
Processing file /tmp/donkey_input28 ... (writing to /tmp/donkey_input28.xml) [0.177

seconds]
Processing file /tmp/donkey_input29 ... (writing to /tmp/donkey_input29.xml) [0.168

seconds]
Processing file /tmp/donkey_input30 ... (writing to /tmp/donkey_input30.xml) [0.121

seconds]
Processing file /tmp/donkey_input31 ... (writing to /tmp/donkey_input31.xml) [0.176

seconds]
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Processing file /tmp/donkey_input32 ... (writing to /tmp/donkey_input32.xml) [0.111
seconds]

Processing file /tmp/donkey_input33 ... (writing to /tmp/donkey_input33.xml) [0.205
seconds]

Processing file /tmp/donkey_input34 ... (writing to /tmp/donkey_input34.xml)
Processing file /tmp/donkey_input35 ... (writing to /tmp/donkey_input35.xml)
Processing file /tmp/donkey_input36 ... (writing to /tmp/donkey_input36.xml)
Processing file /tmp/donkey_input37 ... (writing to /tmp/donkey_input37.xml) [0.160

seconds]
Processing file /tmp/donkey_input38 ... (writing to /tmp/donkey_input38.xml)
Processing file /tmp/donkey_input39 ... (writing to /tmp/donkey_input39.xml)
Processing file /tmp/donkey_input40 ... (writing to /tmp/donkey_input40.xml) [0.184

seconds]
Processing file /tmp/donkey_input41 ... (writing to /tmp/donkey_input41.xml) [0.121

seconds]
Processing file /tmp/donkey_input42 ... (writing to /tmp/donkey_input42.xml) [0.156

seconds]
Processing file /tmp/donkey_input43 ... (writing to /tmp/donkey_input43.xml) [0.120

seconds]
Processing file /tmp/donkey_input44 ... (writing to /tmp/donkey_input44.xml) [0.356

seconds]
Processing file /tmp/donkey_input45 ... (writing to /tmp/donkey_input45.xml) [0.172

seconds]
Processing file /tmp/donkey_input46 ... (writing to /tmp/donkey_input46.xml)
Processing file /tmp/donkey_input47 ... (writing to /tmp/donkey_input47.xml) [0.104

seconds]
Processing file /tmp/donkey_input48 ... (writing to /tmp/donkey_input48.xml)
Processing file /tmp/donkey_input49 ... (writing to /tmp/donkey_input49.xml) [0.131

seconds]
Processing file /tmp/donkey_input50 ... (writing to /tmp/donkey_input50.xml)
Processing file /tmp/donkey_input51 ... (writing to /tmp/donkey_input51.xml)
Processing file /tmp/donkey_input52 ... (writing to /tmp/donkey_input52.xml) [0.201

seconds]
Processing file /tmp/donkey_input53 ... (writing to /tmp/donkey_input53.xml)
Annotation pipeline timing information:
PTBTokenizerAnnotator: 0.2 sec.
WordsToSentencesAnnotator: 0.0 sec.
POSTaggerAnnotator: 0.4 sec.
MorphaAnnotator: 0.7 sec.
NERCombinerAnnotator: 7.4 sec.
ParserAnnotator: 14.0 sec.
DeterministicCorefAnnotator: 1.5 sec.
TOTAL: 24.1 sec. for 599 tokens at 24.9 tokens/sec.
Pipeline setup: 56.5 sec.
Total time for StanfordCoreNLP pipeline: 81.5 sec.
Exit code: ExitSuccess
If a man eats a sausage, he is happy.
?0(1 ·4· ∃a ·man(a) ·4·4·∃b ·sausage(b) ·4·eat(a,b) ·1 ·?1(happy(a)))
∃a ·man(a) · ∃b ·sausage(b)⇒(eat(a,b)⇒(>⇒happy(a)))
∀a(man(a)⇒∀b(sausage(b)∧eat(a,b)⇒happy(a)))

Every person has a pet.
?0(1 ·4· ∃a ·person(a) ·4·1 ·4· ∃b ·pet(b) ·4·have(a,b))
∃a ·person(a)⇒∃b ·pet(b) ·(>⇒have(a,b))
∀a(person(a)⇒∃b(pet(b)∧have(a,b)))

Every man supports every woman.
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?0(1 ·4· ∃a ·man(a) ·4·1 ·?0(1 ·4· ∃b ·woman(b) ·4·1 ·support(a,b)))
∃a ·man(a) · ∃b ·woman(b)⇒(>⇒support(a,b))
∀a(man(a)⇒∀b(woman(b)⇒support(a,b)))

Every man supports no woman.
?0(1 ·4· ∃a ·man(a) ·4·1 ·?0(1 · ∃b ·woman(b) ·support(a,b) ·1 ·⊥))
∃a ·man(a)⇒(>⇒¬(∃b ·woman(b) ·support(a,b)))
∀a(man(a)⇒∀b(woman(b)⇒¬support(a,b)))

Every farmer beats some donkey.
?0(1 ·4· ∃a ·farmer(a) ·4·1 ·4· ∃b ·donkey(b) ·4·beat(a,b))
∃a ·farmer(a)⇒∃b ·donkey(b) ·(>⇒beat(a,b))
∀a(farmer(a)⇒∃b(donkey(b)∧beat(a,b)))

If a farmer owns a donkey, he beats it
?0(1 ·4· ∃a ·farmer(a) ·4·4·∃b ·donkey(b) ·4·own(a,b) ·1 ·?1(beat(a,b)))
∃a ·farmer(a) · ∃b ·donkey(b)⇒(own(a,b)⇒(>⇒beat(a,b)))
∀a(farmer(a)⇒∀b(donkey(b)∧own(a,b)⇒beat(a,b)))

A man comes in. He sees a donkey. He smiles.
4·∃a ·man(a) ·4·come-in(a) ·4· ∃b ·donkey(b) ·4·see(a,b) ·smile(a)
>⇒∃a ·man(a) · ∃b ·donkey(b) ·come-in(a) ·see(a,b) ·smile(a)
∃a(man(a)∧∃b(donkey(b)∧come-in(a)∧see(a,b)∧smile(a)))

A farmer. A Donkey. If he owns it, he beats it.
4·∃a ·farmer(a) ·4·4·∃b ·donkey(b) ·4·?0(1 ·own(a,b) ·1 ·?1(beat(a,b)))
>⇒∃a ·farmer(a) · ∃b ·donkey(b) ·(own(a,b)⇒(>⇒beat(a,b)))
∃a(farmer(a)∧∃b(donkey(b)∧(own(a,b)⇒beat(a,b))))

A dog barks. If it is beaten, it whines.
4·∃a ·dog(a) ·4·bark(a) ·?0(1 ·beat(b) ·1 ·?1(whine(b)))
>⇒∃a ·dog(a) ·bark(a) ·(beat(b)⇒(>⇒whine(b)))
∃a(dog(a)∧bark(a)∧(beat(b)⇒whine(b)))

If a farmer owns a donkey, he beats it. If he rewards it, he doesn’t own it.
?0(1 ·4· ∃a ·farmer(a) ·4·4·∃b ·donkey(b) ·4·own(a,b) ·1 ·?1(beat(a,b))) ·?0(1 ·reward(a,b) ·

1 ·?1(?0(1 ·own(a,b) ·1 ·⊥)))
∃a ·farmer(a) · ∃b ·donkey(b)⇒(own(a,b)⇒(>⇒beat(a,b))) ·(reward(a,b)⇒(>⇒¬own(a,b)))
∀a(farmer(a)⇒∀b(donkey(b)⇒(own(a,b)⇒beat(a,b))∧(reward(a,b)⇒¬own(a,b))))

If a farmer owns a donkey, he owns a horse. If he doesn’t own it, he owns a cow.
?0(1 ·4· ∃a ·farmer(a) ·4·4·∃b ·donkey(b) ·4·own(a,b) ·1 ·?1(4·∃c ·horse(c) ·4·own(a,c))) ·?0(

1 ·?0(1 ·own(a,b) ·1 ·⊥) ·1 ·?1(4·∃d ·cow(d) ·4·own(a,d)))
∃a ·farmer(a) · ∃b ·donkey(b)⇒(own(a,b)⇒(>⇒∃c ·horse(c) ·own(a,c))) ·(¬own(a,b)⇒(>⇒∃d ·cow(d)

·own(a,d)))
∀a(farmer(a)⇒∀b(donkey(b)⇒(own(a,b)⇒∃c(horse(c)∧own(a,c)))∧(¬own(a,b)⇒∃d(cow(d)∧own(a

,d)))))

If a woman is American, she loves a soldier. If she is Dutch, she loves a bike-rider.
?0(1 ·4· ∃a ·woman(a) ·4·american(a) ·1 ·?1(4·∃b ·soldier(b) ·4·love(a,b))) ·?0(1 ·dutch(a) ·

1 ·?1(4·∃c ·bike-rider(c) ·4·love(a,c)))
∃a ·woman(a)⇒(american(a)⇒(>⇒∃b ·soldier(b) ·love(a,b))) ·(dutch(a)⇒(>⇒∃c ·bike-rider(c) ·

love(a,c)))
∀a(woman(a)⇒(american(a)⇒∃b(soldier(b)∧love(a,b)))∧(dutch(a)⇒∃c(bike-rider(c)∧love(a,

c))))

A farmer owns a donkey. It is brown and he beats it every day.
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4·∃a ·farmer(a) ·4·4·∃b ·donkey(b) ·4·own(a,b) ·brown(b) ·beat-every-day(a,b)
>⇒∃a ·farmer(a) · ∃b ·donkey(b) ·own(a,b) ·brown(b) ·beat-every-day(a,b)
∃a(farmer(a)∧∃b(donkey(b)∧own(a,b)∧brown(b)∧beat-every-day(a,b)))

A farmer starves a horse and beats a donkey.
4·∃a ·farmer(a) ·4·4·∃b ·horse(b) ·4·starve(a,b) ·4· ∃c ·donkey(c) ·4·beat(a,c)
>⇒∃a ·farmer(a) · ∃b ·horse(b) · ∃c ·donkey(c) ·starve(a,b) ·beat(a,c)
∃a(farmer(a)∧∃b(horse(b)∧∃c(donkey(c)∧starve(a,b)∧beat(a,c))))

All donkeys and a horse sing a song.
?0(1 ·4· ∃a ·donkey(a) ·4·1 ·4· ∃b ·horse(b) ·4·?0(1 · ∃c ·eq-on-of(c,a,b) ·1 ·4· ∃d ·song(d) ·4·

sing(c,d)))
∃a ·donkey(a)⇒∃b ·horse(b) · ∃d ·song(d) ·(>⇒(∃c ·eq-on-of(c,a,b)⇒sing(c,d)))
∀a(donkey(a)⇒∃b(horse(b)∧∃d(song(d)∧∀c(eq-on-of(c,a,b)⇒sing(c,d)))))

Some farmer and entrepreneur beats a donkey.
4·∃a ·farmer(a) ·entrepreneur(a) ·4·4·∃b ·donkey(b) ·4·beat(a,b)
>⇒∃a ·farmer(a) ·entrepreneur(a) · ∃b ·donkey(b) ·beat(a,b)
∃a(farmer(a)∧entrepreneur(a)∧∃b(donkey(b)∧beat(a,b)))

A man and a woman owned a horse and a donkey. If the donkey did not walk, and the man
was a farmer, he beat it.

4·∃a ·man(a) ·4·4·∃b ·woman(b) ·4·?0(1 · ∃c ·eq-on-of(c,a,b) ·1 ·4· ∃d ·horse(d) ·4·4·∃e ·donkey
(e) ·4·?0(1 · ∃f ·eq-on-of(f,d,e) ·1 ·own(c,f))) ·?0(1 ·?0(1 ·walk(e) ·1 ·⊥) ·a-farmer(a
) ·1 ·?1(beat(a,e)))

>⇒∃a ·man(a) · ∃b ·woman(b) · ∃d ·horse(d) · ∃e ·donkey(e) ·(∃c ·eq-on-of(c,a,b)⇒(∃f ·eq-on-of(f,d
,e)⇒own(c,f))) ·(¬walk(e) ·a-farmer(a)⇒(>⇒beat(a,e)))

∃a(man(a)∧∃b(woman(b)∧∃d(horse(d)∧∃e(donkey(e)∧∀c(eq-on-of(c,a,b)⇒∀f(eq-on-of(f,d,e)⇒
own(c,f)))∧(¬walk(e)∧a-farmer(a)⇒beat(a,e))))))

She is a mother of five
a-mother-of-five(a)
>⇒a-mother-of-five(a)
a-mother-of-five(a)

If a farmer owns it and he beats it, it is a donkey
?0(1 ·4· ∃a ·farmer(a) ·4·own(a,b) ·beat(a,b) ·1 ·?1(a-donkey(b)))
∃a ·farmer(a)⇒(own(a,b) ·beat(a,b)⇒(>⇒a-donkey(b)))
∀a(farmer(a)∧own(a,b)∧beat(a,b)⇒a-donkey(b))

No man walks in the park. He yodels.
?0(1 · ∃a ·man(a) ·walk-in-the-park(a) ·1 ·⊥) ·yodel(a)
>⇒¬(∃a ·man(a) ·walk-in-the-park(a)) ·yodel(a)
∀a(man(a)⇒¬walk-in-the-park(a))∧yodel(a)

A farmer beats a donkey, if he owns it.
Main.hs: Unsuported by intVP: [L "VB" ("beat",(0,2)),P "NP" [L "DT" ("a",(0,3)),L "NN

" ("donkey",(0,4))],L "," (",",(0,5)),P "SBAR" [L "IN" ("if",(0,6)),P "S" [P "NP"
[L "PRP" ("he",(0,7))],P "VP" [L "VB" ("own",(0,8)),P "NP" [L "PRP" ("it",(0,9))
]]]]]

6.4 Source Code

An online repository of the source code can be found at[1].
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Listing 1: run.sh
#!/bin/bash
cd "$(dirname $0)/src"
runghc Main.hs $1 $2

Listing 2: src/Main.hs
module Main (main) where

import Stanford (run, runDry)
import ToLogic (montague)
import qualified Visser as V
import qualified Dpl as D
import qualified Fol as F

import Control.Monad
import Data.List
import Data.Maybe
import System.Environment
import System.IO

-- Reads and returns every line from a file, modulo comments and blanks
readSentences :: FilePath → IO [String]
readSentences path = do

handle ← openFile path ReadMode
contents ← hGetContents handle
return [trimComments l | l ← lines contents, (not.null) (trimComments l)]

-- This trims a string for tabs and spaces. Also remove comment suffixes
trimComments :: String → String
trimComments = reverse.dropWhile isSpace.reverse . dropWhile isSpace . takeWhile ( 6= ’#’)

where
isSpace ’ ’ = True
isSpace ’λt’ = True
isSpace _ = False

main :: IO ()
main = do

args ← getArgs
if null args then error "Usage: donkey inputfile [--dry]" else return ()
sentences ← readSentences (head args)
putStrLn "Running Stanford Parser..."
model ← (if args == ["--dry"] then runDry else run) sentences
sequence [do {

putStrLn s;
putStrLn $ (V.pretty . V.simplify) p;
putStrLn $ (D.pretty . D.simplify . V.intVisser3) p;
putStrLn $ (F.pretty . F.simplify . D.intDpl3 . V.intVisser3) p;
putStrLn ""

} | (s, p) ← zip sentences (map montague model)]
return ()

Listing 3: src/Stanford.hs
module Stanford (Store, IWord, run, runDry, runOnFile, PosTree(..), postrees, variables) where
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import Fol (Ref)

import Text.ParserCombinators.Parsec
import Data.Map hiding (map, (\\), mapMaybe, null)

import Data.List hiding (union, insert, lookup)
import Text.XML.Light
import Control.Monad
import Data.Maybe
import System.Process

type Index = (Int, Int)
type Word = String
type IWord = (Word, Index)
type Sentence = [Word]

type PosTag = String
data PosTree a = P PosTag [PosTree a] | L PosTag a deriving (Show)

data DepTree = Dep Int [(Ref, DepTree)] deriving (Show, Eq)

type Store = Index → Ref

------------------

-- lemmas are standardized forms of words. E.g. did → do, n’t → not
lemmas :: Element → [Sentence]
lemmas doc = map lemma (findElements (unqual "sentence") sentences)

where
Just sentences = findElement (unqual "sentences") doc
lemma doc’ = map strContent (findElements (unqual "lemma") doc’)

------------------

-- Extracts the constituent tree from a document.
postrees :: Element → [PosTree Word]
postrees doc = map rootfilter roots

where
parses = findElements (unqual "parse") doc
roots = map (postreeRoot . strContent) parses
rootfilter (P "ROOT" [n]) = n
rootfilter root = error ("Cant parse strange sentence "++show root)

postreeRoot :: String → PosTree Word
postreeRoot dat = tree

where
Right tree = parse posEither "(unknown)" dat

posEither =
do

char ’(’
res ← try posTree <|> posLeaf
char ’)’
return res

posTree =
do

tag ← many (noneOf " ")
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char ’ ’
subs ← sepBy1 posEither (char ’ ’)
return (P tag subs)

posLeaf =
do

tag ← many (noneOf " ")
char ’ ’
word ← many (noneOf " ()")
return (L tag word)

-- Takes a postree and a lemmaized list of words for each sentence
-- and produces a cleaned up and index tagged tree
cleanTrees :: [PosTree Word] → [Sentence] → [PosTree IWord]
cleanTrees trees ls = map cleanElements $ map cleanTags $ improveTrees trees ls

-- Tags leafs with indicies
improveTrees :: [PosTree Word] → [Sentence] → [PosTree IWord]
improveTrees trees ls = [improve t l s | (t, l, s) ← zip3 trees ls [0..]]

where improve t l s = substitute t (zip l (zip (repeat s) [0..]))

-- simplifies certain tags with tedious information
cleanTags :: PosTree a → PosTree a
cleanTags = treemap f id

where
f "VBD" = "VB"
f "VBG" = "VB"
f "VBN" = "VB"
f "VBP" = "VB"
f "VBZ" = "VB"
f "NNS" = "NN"
f other = other

-- deletes certain nodes with tedious information
cleanElements :: PosTree a → PosTree a
cleanElements tree = fromJust (deleteTag "." tree)

-- Maybe this is not useful afterall
rearrangeCCs :: PosTree a → PosTree a
rearrangeCCs (L t w) = L t w
rearrangeCCs (P t xs) | null bs = P t ccxs

| otherwise = P t [P "CC" [P t as, P t (tail bs)]]
-- | otherwise = P ("CC"++t) [P t as, P t (tail bs)]

where
ccxs = map rearrangeCCs xs
(as, bs) = break f ccxs
f (L t _) = t == "CC"
f (P _ _) = False

-- deletes all nodes with a given tag
deleteTag :: PosTag → PosTree a → Maybe (PosTree a)
deleteTag t1 (P t2 xs) | t1 == t2 = Nothing

| otherwise = Just (P t2 (mapMaybe (deleteTag t1) xs))
deleteTag t1 (L t2 w) | t1 == t2 = Nothing

| otherwise = Just (L t2 w)

-- map over tags and leaf values
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treemap :: (PosTag → PosTag) → (b → c) → PosTree b → PosTree c
treemap f g (L tag word) = L (f tag) (g word)
treemap f g (P tag subs) = P (f tag) (map (treemap f g) subs)

-- Replaces every leaf value with a value from a list, in order
substitute :: PosTree a → [b] → PosTree b
substitute tree list = snd (substitute_ tree list)

where
substitute_ (L tag x) (l:ls) = (ls, L tag l)
substitute_ (P tag []) ls = (ls, P tag [])
substitute_ (P tag (t:ts)) ls = (ls’’, P tag (s:ss))

where (ls’, s) = substitute_ t ls
(ls’’, P _ ss) = substitute_ (P "" ts) ls’

------------------

-- Extract the deptree for each sentence
deps :: Element → String → [DepTree]
deps doc name = map (buildTree deps) roots

where
deps = listDeps doc name
lefts = nub [gov | (typ, gov, dep) ← deps]
rights = nub [dep | (typ, gov, dep) ← deps]
roots = lefts \\ rights

-- The dependency information comes in tuples of (label, arrow_from, arrow_to)
-- This function transforms a set of tuples into an algebraic tree structure
buildTree :: [(String, Int, Int)] → Int → DepTree
buildTree deps root = Dep root [(name, buildTree deps dep) | (name, gov, dep) ← deps, gov == root]

-- Extract dependecy tuples form xml
listDeps :: Element → String → [(String, Int, Int)]
listDeps doc name = map parseDep deps

where
Just dep = findElement (unqual name) doc
deps = findElements (unqual "dep") dep

-- Extract single tuple from ‘dep’ element
parseDep :: Element → (String, Int, Int)
parseDep e = (typ, read gov - 1, read dep - 1)

where
Just typ = findAttr (unqual "type") e
Just gov = findChild (unqual "governor") e�=(findAttr (unqual "idx"))
Just dep = findChild (unqual "dependent") e�=(findAttr (unqual "idx"))

------------------

-- Calls ‘corefs’ to extract a map from word-index to variable name.
-- In case the index has no assigned variable, a globally free variable is returned
allRefs :: Element → [Ref] → Store
allRefs doc vs = searcher

where (vs’, comap) = corefs doc vs
searcher i = findWithDefault (vs’ !! diagonal i) i comap
diagonal (j,k) = (j+k)∗(j+k+1)‘div‘2 + j

-- Builds a map from word-index to variable name for a single coreference element.
-- Additionally returns a list of unused variable names.
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corefs :: Element → [Ref] → ([Ref], Map Index Ref)
corefs doc vs = (vs’, unions [singleton i v | (men, v) ← zip ments vs,

indices ← map parseMention men,
i ← indices])

where
corefs = findElements (unqual "coreference") doc�=elChildren
ments = map (findElements (unqual "mention")) corefs
vs’ = drop (length corefs) vs

-- Extracts indicies governed by a single mention element
parseMention :: Element → [Index]
parseMention men = [(toint sentence-1, i) | i ← [toint start-1..toint end-2]]

where
Just sentence = findChild (unqual "sentence") men
Just start = findChild (unqual "start") men
Just end = findChild (unqual "end") men
toint = read . strContent

--------------------

-- An infinite list of possible variable names
variables :: [Ref]
variables = alphabet++[b++a | b ← variables, a ← alphabet]

where alphabet = [c:"" | c ← "abcdefghijklmnopqrstuvwxyz"]

-- A list of tempoary filenames for the produced xml files
filenames = ["/tmp/donkey_input"++show i | i ← [0..]]

-- Runs the Stanford toolchain on each of a list of Strings.
run :: [String] → IO [(Store, [PosTree IWord])]
run sentences =

do
sequence (zipWith writeFileLn names sentences)
writeFileLn listname (intercalate "λn" names)
(_, _, _, h) ← createProcess (shell (stanfordpath++" -outputDirectory /tmp -filelist "

++listname))
exitCode ← waitForProcess h
putStrLn ("Exit code: "++show exitCode)
sequence [runOnFile (name++".xml") | name ← names]

where
stanfordpath = "../stanford-corenlp-full-2012-11-12/corenlp.sh"
listname = "/tmp/donkey_inputlist"
names = take (length sentences) filenames
writeFileLn path s = writeFile path (s++"λn")

-- Like ‘run’, but doesn’t actually call the Stanford toolchain.
-- It is assumed the previous tempoary xml files still eixst
runDry :: [String] → IO [(Store, [PosTree IWord])]
runDry sentences =

do
sequence [runOnFile (name++".xml") | name ← names]

where
names = take (length sentences) filenames

-- Extracts the usable information from a single generated xml file
runOnFile :: FilePath → IO (Store, [PosTree IWord])
runOnFile name =
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do
f ← readFile name
case parseXMLDoc f of

Nothing → error ("Unable to parse XML "++name)
Just xml → do

return (
allRefs xml variables,
cleanTrees (postrees xml) (lemmas xml))

Listing 4: src/ToLogic.hs
module ToLogic (montague) where

import Fol (Ref)
import Visser (Visser(..), cleanVariables)
import Stanford (IWord, Store, PosTree(..))

import Data.List
import Data.Map hiding (lookup, mapMaybe, map)
import Data.Maybe

type Predicate = Ref → Visser
type Predicate2 = Ref → Ref → Visser

-- Runs a montague grammar transformation on a constituent tree and a
-- word-index to variable name map. The produced logic is a
-- polarity-switch + scope-modifier donkey monoid
montague :: (Store, [PosTree IWord]) → Visser
montague (refs, tree) = cleanVariables $ intRoot tree refs

intRoot :: [PosTree IWord] → Store → Visser
intRoot ((P "S" s):ss) r = intS s r ‘VC‘ intRoot ss r
intRoot ((P "NP" np):ss) r = intNP np r (λx → VT) ‘VC‘ intRoot ss r
intRoot [] r = VT

intS :: [PosTree IWord] → Store → Visser
intS [P "NP" np, P "VP" vp] r = intNP np r (intVP vp r)
intS ((P "SBAR" [(L "IN" ("if",_)), (P "S" s1)]) : (L "," _) : s2) r =

VQ0 (VSw ‘VC‘ intS s1 r ‘VC‘ VSw ‘VC‘ VQ1 (intS s2 r))
intS [P "S" s1, L "CC" ("and",_), P "S" s2] r = intS s1 r ‘VC‘ intS s2 r
intS [P "S" s1, L "," _, L "CC" ("and",_), P "S" s2] r = intS s1 r ‘VC‘ intS s2 r
intS other r = error ("Unsuported by intS: "++show other)

intNP :: [PosTree IWord] → Store → Predicate → Visser
intNP [L "PRP" (prp,i)] r vb = vb (r i)
intNP [L "DT" dt, L "NN" nn] r vb = intDT dt r (intNN nn r) vb
intNP [L "DT" dt, L "NN" nn1, L "CC" ("and",_), L "NN" nn2] r vb = intDT dt r (λx → intNN nn1 r x ‘VC

‘ intNN nn2 r x) vb
intNP [P "NP" np1, L "CC" ("and",_), P "NP" np2] r vb = intNP np1 r (λx → intNP np2 r (inner x))

where inner x y = VQ0 (VSw ‘VC‘ VE (x++y) ‘VC‘ VP "eq-on-of" [(x++y),x,y] ‘VC‘ VSw ‘VC‘ vb (x++y)
) -- hopefully x+y is free

intNP other r vb = error ("Unsuported by intNP: "++show other)

intVP :: [PosTree IWord] → Store → Predicate
intVP [L "VB" ("be",_), what] r = λv → VP (stringify [what]) [v]
intVP [L "VB" vb] r = intVB vb r
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intVP [L "VB" vb, P "NP" np] r = λv → intNP np r (intVB2 vb r v) -- it could be nice to ’swap’
subject and object here, to make it read more like the original sentence

intVP [P "VP" vp1, L "CC" ("and",_), P "VP" vp2] r = λv → intVP vp1 r v ‘VC‘ intVP vp2 r v
intVP [L "VB" vb1, L "CC" ("and",_), L "VB" vb2, P "NP" np] r = λv1 → (intNP np r (λv2 → (intVB2 vb1

r v1 v2) ‘VC‘ (intVB2 vb2 r v1 v2)))
intVP n@[L "VB" vb, P "PP" pp] r = intVB (stringify n,(0,0)) r
intVP [L "VB" (vb,i), P "NP" np, P "NP-TMP" nptmp] r = intVP [L "VB" (vb++"-"++stringify nptmp,i), P "NP

" np] r
intVP [L "VB" ("do",_), L "RB" ("not",_), P "VP" vp] r = λv → VQ0 (VSw ‘VC‘ intVP vp r v ‘VC‘ VSw ‘VC

‘ VF)
intVP other r = error ("Unsuported by intVP: "++show other)

-- Stanford parser doesn’t seperate transitive verbs, so our type has to accept any number of
arguments

-- Hvis de to n;ste ikke bliver mere komplicerede kan vi ogs[ bare proppe dem ind i VP ovenfor.
intVB :: IWord → Store → Predicate
intVB (vb,_) r = λv → VP vb [v]
intVB2 :: IWord → Store → Predicate2
intVB2 (vb,_) r = λv1 v2 → VP vb [v1, v2]

intNN :: IWord → Store → Predicate
intNN (nn,_) r = λv → VP nn [v]

intDT :: IWord → Store → Predicate → Predicate → Visser
intDT ("some", i) r = λp q → VSc ‘VC‘ VE m ‘VC‘ p m ‘VC‘ VSc ‘VC‘ q m where m = r i
intDT ("a", i) r = intDT ("some", i) r
intDT ("the", i) r = λp q → q m where m = r i
intDT ("every", i) r = λp q → VQ0 (VSw ‘VC‘ VSc ‘VC‘ VE m ‘VC‘ p m ‘VC‘ VSc ‘VC‘ VSw ‘VC‘ q m) where

m = r i
intDT ("all", i) r = intDT ("every", i) r
intDT ("no", i) r = λp q → VQ0 (VSw ‘VC‘ VE m ‘VC‘ p m ‘VC‘ q m ‘VC‘ VSw ‘VC‘ VF) where m = r i
intDT other r = error ("Unsuported by intDT: "++show other)

-- Future:

-- Adjectives:
-- (NP (JJ big) (NN sausage))
-- What about adjective phrases? ADJP
-- (ADJP (RB very) (JJ big))

-- Also:
-- ADVP - Adverb Phrase.
-- CONJP - Conjunction Phrase
-- PP - Prepositional Phrase.
-- Different WH phrases

flatten :: PosTree a → [a]
flatten (P _ xs) = xs�=flatten
flatten (L _ x) = [x]

stringify :: [PosTree IWord] → String
stringify ts = intercalate "-" words

where words = map fst (ts�=flatten)

Listing 5: src/Dpl.hs
module Dpl (Dpl(..), tex, pretty, simplify, Assignment, intDpl, intDpl2, intDpl3) where
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import Fol (Ref, Sigma, Fol(..), Entity, Domain, Predicate)

import Data.List (intersperse)
import Utils (wrap, replace)
import Control.Monad ((>=>))

-----------------------------------------------------------
-- Syntax

data Dpl =
DT | DF
| DC Dpl Dpl
| DD Dpl Dpl
| DN Dpl
| DI Dpl Dpl
| DE Ref
| DP Ref [Ref]
deriving (Eq, Show)

-- Printing functions

tex :: Dpl → String
tex = fst . tex’ where
tex’ DT = ("\\top", 0)
tex’ DF = ("\\bot", 0)
tex’ (DC p q) = (wrap 1 (tex’ p)++" \\cdot "++wrap 1 (tex’ q), 1)
tex’ (DD p q) = (wrap 2 (tex’ p)++" \\vee "++wrap 2 (tex’ q), 2)
tex’ (DI p q) = (wrap 2 (tex’ p)++" \\rightarrow "++wrap 2 (tex’ q), 3)
tex’ (DN p) = ("\\neg "++wrap 0 (tex’ p), 0)
tex’ (DE k) = ("\\exists "++k, 0)
tex’ (DP f ks) = (replace "-" "\\_" f++"("++concat (intersperse "," ks)++")", 0)

pretty :: Dpl → String
pretty = fst . pretty’ where
pretty’ DT = (">", 0)
pretty’ DF = ("⊥", 0)
pretty’ (DC p q) = (wrap 1 (pretty’ p)++"·"++wrap 1 (pretty’ q), 1)
pretty’ (DD p q) = (wrap 2 (pretty’ p)++"∨"++wrap 2 (pretty’ q), 2)
pretty’ (DI p q) = (wrap 2 (pretty’ p)++"⇒"++wrap 2 (pretty’ q), 3)
pretty’ (DN p) = ("¬"++wrap 0 (pretty’ p), 0)
pretty’ (DE k) = ("∃"++k, 0)
pretty’ (DP f ks) = (f++"("++concat (intersperse "," ks)++")", 0)

simplify :: Dpl → Dpl
simplify p = iterate simp p !! 10

simp :: Dpl → Dpl
simp (DC p DT) = simp p
simp (DC DT p) = simp p
simp (DC p DF) = DF
simp (DC DF p) = DF
simp (DI p DF) = DN p
-- scope related
simp (DI DT (DI DT p)) = DT ‘DI‘ simp p
simp (DN (DN p)) = DT ‘DI‘ simp p
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-- Fall throughs
simp (DC p q) = simp p ‘DC‘ simp q
simp (DD p q) = simp p ‘DD‘ simp q
simp (DI p q) = simp p ‘DI‘ simp q
simp (DN p) = DN (simp p)
simp p = p
-- See the paper on why the following disjunction rules are invalid
-- simp (DD p DT) = DT
-- simp (DD DT p) = DT
-- simp (DD p DF) = simp p
-- simp (DD DF p) = simp p

-----------------------------------------------------------
-- Interpretation

type Assignment = [(Ref, Entity)]
type Interpretation1 = (Sigma, Domain, Ref → Predicate)
type IDpl = Interpretation1 → Assignment → Assignment → Bool

intDpl :: Dpl → IDpl
intDpl DT _ x y = x == y
intDpl DF _ x y = False
intDpl (DC p q) i@(sigma,dom,_) x y = or [x ‘r‘ z && z ‘s‘ y | z ← assignments]

where (r, s) = (intDpl p i, intDpl q i)
assignments = sequence [[(k,v) | v ← dom] | k ← sigma]

intDpl (DN p) i x y = x == y && not (x ‘r‘ y) where r = intDpl p i
intDpl (DI p q) i x y = intDpl (DN (p ‘DC‘ (DN q))) i x y
intDpl (DE var) i x y = hide var x == hide var y where hide key = filter (λ(x,y) → x

6= key)
intDpl (DP name args) (_,_,intp) x y = x == y && intp name (map (lookup’ x) args)

-- Like ‘lookup’, but throws an error in case the entity was not available.
-- We can use this version since our formulas are guarenteed to be valid.
lookup’ :: Assignment → Ref → Entity
lookup’ xys key | Just e ← lookup key xys = e

| otherwise = error ("Variable not in scope: "++key)

type Interpretation2 = (Domain, Ref → Predicate)
type IDpl2 = Interpretation2 → Assignment → [Assignment]

intDpl2 :: Dpl → IDpl2
intDpl2 DT _ = return
intDpl2 DF _ = const []
intDpl2 (DC p q) i = intDpl2 p i>=>intDpl2 q i
intDpl2 (DN p) i = λx → if null (intDpl2 p i x) then [[]] else []
intDpl2 (DI p q) i = intDpl2 (DN (p ‘DC‘ (DN q))) i
intDpl2 (DE var) (dom,_) = λx → [set var val x | val ← dom]
intDpl2 (DP name args) (_,pint) = λx → if pint name (map (lookup’ x) args) then [] else [x]

set :: Ref → Entity → Assignment → Assignment
set k v xys = (k,v) : filter (λ(x,y) → x 6= k) xys

intDpl3 :: Dpl → Fol
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intDpl3 p = addDpl T [p]

addDpl :: Fol → [Dpl] → Fol
addDpl p [] = p
addDpl p (DT:ds) = addDpl p ds
addDpl p (DF:ds) = F
addDpl p ((DC d1 d2):ds) = addDpl p (d2:d1:ds)
addDpl p ((DN d):ds) = addDpl (And (Not (addDpl T [d])) p) ds
addDpl p ((DI d1 d2):ds) = addDpl p ((DN (DC d1 (DN d2))):ds)
addDpl p ((DE k):ds) = addDpl (Exists k p) ds
addDpl p ((DP f ks):ds) = addDpl (And (Predi f ks) p) ds
addDpl p ((DD d1 d2):ds) = Or (addDpl p (d1:ds)) (addDpl p (d2:ds))

-- More possible interpretation includes Visser’s disjunction interpretation

Listing 6: src/Visser.hs
module Visser (Visser(..), simplify, tex, pretty, cleanVariables, intVisser1, intVisser2, intVisser3)

where

import Fol (Ref, Fol(..))
import Dpl (Dpl(..))
import Stanford (variables)

import Data.List (intersperse, nub)
import Utils (replace)

-- Syntax

data Visser =
VT | VF
| VC Visser Visser
| VD Visser Visser
| VE Ref
| VP Ref [Ref]
| VSw
| VSc
| VQ0 Visser
| VQ1 Visser
deriving (Eq, Show)

tex :: Visser → String
tex VT = "\\top"
tex VF = "\\bot"
tex VSw = "\\Bowtie"
tex VSc = "\\triangle"
tex (VC p q) = tex p++" \\cdot "++tex q
tex (VD p q) = "("++tex p++") \\vee ("++tex q++")"
tex (VE k) = "\\exists "++k
tex (VP f ks) = replace "-" "\\_" f++"("++concat (intersperse "," ks)++")"
tex (VQ0 p) = "?_0("++tex p++")"
tex (VQ1 p) = "?_1("++tex p++")"

pretty :: Visser → String
pretty VT = ">"
pretty VF = "⊥"
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pretty VSw = "1 "
pretty VSc = "4"
pretty (VC p q) = pretty p++"·"++pretty q
pretty (VD p q) = "("++pretty p++")∨("++pretty q++")"
pretty (VE k) = "∃"++k
pretty (VP f ks) = f++"("++concat (intersperse "," ks)++")"
pretty (VQ0 p) = "?0("++pretty p++")"
pretty (VQ1 p) = "?1("++pretty p++")"

simp :: Visser → Visser
simp (VC p VT) = simp p
simp (VC VT p) = simp p
--simp (VC p VF) = VF
--simp (VC VF p) = VF
-- TODO: Get rid of conjunctive, equal stream devices
-- Fall throughs
simp (VC p q) = simp p ‘VC‘ simp q
simp (VD p q) = simp p ‘VD‘ simp q
simp (VQ0 p) = VQ0 (simp p)
simp (VQ1 p) = VQ1 (simp p)
simp p = p

simplify :: Visser → Visser
simplify p = iterate simp p !! 2

-- Renames variables to [a..], removing gaps.
cleanVariables :: Visser → Visser
cleanVariables p = foldl rename p (zip used im++zip im variables)
where
used = nub (listem p)
im = map (++"0") used
listem (VE k) = [k]
listem (VP f ks) = ks
listem (VC p q) = listem p++listem q
listem (VD p q) = listem p++listem q
listem (VQ0 p) = listem p
listem (VQ1 p) = listem p
listem p = []
rename (VE k) (x,y) = if k == x then VE y else VE k
rename (VP f ks) (x,y) = VP f [if k == x then y else k | k ← ks]
rename (VC p q) (x,y) = VC (rename p (x,y)) (rename q (x,y))
rename (VD p q) (x,y) = VD (rename p (x,y)) (rename q (x,y))
rename (VQ0 p) (x,y) = VQ0 (rename p (x,y))
rename (VQ1 p) (x,y) = VQ1 (rename p (x,y))
rename p (x,y) = p

-- Interpretation

type IVisser1 = (Dpl, Dpl, Integer)

intVisser1 :: Visser → IVisser1
intVisser1 VT = (DT, DT, 1)
intVisser1 VF = (DT, DF, 1)
intVisser1 VSw = (DT, DT, -1)
intVisser1 (VP p rs) = (DT, DP p rs, 1)
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intVisser1 (VE r) = (DT, DE r, 1)
intVisser1 (VC vis1 vis2) = compVisser1 (intVisser1 vis1) (intVisser1 vis2)
intVisser1 (VQ0 vis) = (DT, qm ‘DI‘ qp, 1) where (qm, qp, _) = intVisser1 vis
intVisser1 (VQ1 vis) = error "?1 is not defined in Visser1"

compVisser1 :: IVisser1 → IVisser1 → IVisser1
compVisser1 (qm, qp, 1) (rm, rp, b) = (qm‘DC‘rm, qp‘DC‘rp, b)
compVisser1 (qm, qp, -1) (rm, rp, b) = (qm‘DC‘rp, qp‘DC‘rm, -b)

type IVisser2 = (Dpl, Dpl, Dpl, Dpl, Integer, Integer)

intVisser2 :: Visser → IVisser2
intVisser2 VT = (DT, DT, DT, DT, 1, 0)
intVisser2 VF = (DT, DT, DT, DF, 1, 0)
intVisser2 VSw = (DT, DT, DT, DT, -1, 0)
intVisser2 VSc = (DT, DT, DT, DT, 1, 1)
intVisser2 (VP p rs) = (DT, DT, DT, DP p rs, 1, 0)
intVisser2 (VE r) = (DT, DT, DT, DE r, 1, 0)
intVisser2 (VC vis1 vis2) = compVisser2 (intVisser2 vis1) (intVisser2 vis2)
intVisser2 (VQ0 vis) = (qm1, DT, qp1, qm0 ‘DI‘ qp0, 1, 0)

where (qm1, qm0, qp1, qp0, a, i) = intVisser2 vis
intVisser2 (VQ1 vis) = (DT, DT, DT, (qm1 ‘DC‘ qm0) ‘DI‘ (qp1 ‘DC‘ qp0), 1, 0)

where (qm1, qm0, qp1, qp0, a, i) = intVisser2 vis

compVisser2 :: IVisser2 → IVisser2 → IVisser2
compVisser2 (qm1, qm0, qp1, qp0, 1, 0) (rm1, rm0, rp1, rp0, b, j) = (qm1‘DC‘rm1, qm0‘DC‘rm0, qp1‘DC‘

rp1, qp0‘DC‘rp0, b, j)
compVisser2 (qm1, qm0, qp1, qp0, 1, 1) (rm1, rm0, rp1, rp0, b, j) = (qm1‘DC‘rm0, qm0‘DC‘rm1, qp1‘DC‘

rp0, qp0‘DC‘rp1, b, 1-j)
compVisser2 (qm1, qm0, qp1, qp0, -1, 0) (rm1, rm0, rp1, rp0, b, j) = (qm1‘DC‘rp1, qm0‘DC‘rp0, qp1‘DC‘

rm1, qp0‘DC‘rm0, -b, j)
compVisser2 (qm1, qm0, qp1, qp0, -1, 1) (rm1, rm0, rp1, rp0, b, j) = (qm1‘DC‘rp0, qm0‘DC‘rp1, qp1‘DC‘

rm0, qp0‘DC‘rm1, -b, 1-j)

intVisser3 :: Visser → Dpl
intVisser3 p = (qm1 ‘DC‘ qm0) ‘DI‘ (qp1 ‘DC‘ qp0)

where (qm1, qm0, qp1, qp0, a, i) = intVisser2 p

-- More possible interpretations include support for disjunction
-- and one directional switch

Listing 7: src/Tests.hs
import Test.Framework (defaultMain, testGroup)
import Test.Framework.Providers.HUnit
import Test.Framework.Providers.QuickCheck (testProperty)

import Test.QuickCheck
import Test.HUnit

import System.IO.Unsafe
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import Data.List
import Data.Map hiding (map)
import Data.Char (chr, ord)

import Stanford
import Prop(Ref)

main = defaultMain tests

tests = [
testGroup "Stanford tests" [

testCase "test1" test_tomapping1,
testCase "test2" test_tomapping2,
testProperty "test3" prop_tomapping,
testCase "test4" test_stanford

],
testGroup "Dpl tests" [

]
]

instance Arbitrary Char where
arbitrary = chr ‘fmap‘ oneof [choose (0,127), choose (0,255)]
coarbitrary = coarbitrary . ord

instance Arbitrary PosTree where
arbitrary = do

n ← choose (0, 3) :: Gen Int
n ← return $ if n == 0 then 0 else 1
case n of

0 → do
k ← choose (1, 4) :: Gen Int
subs ← sequence (replicate k arbitrary)
tag ← oneof [elements ["NP"], arbitrary]
return (Phrase tag subs)

1 → do
tag ← arbitrary
word ← arbitrary
return (Leaf tag word)

coarbitrary a b = b

variables :: [Ref]
variables = [c:"" | c ← "abcdefghijklmnopqrstuvwxyz"]
toMapping2 :: PosTree → Map Int Ref
toMapping2 tr = snd (toMapping variables tr)

test_tomapping1 = (toMapping2 . postreeS) inp @?= out
where inp = "(NP (DT The) (NN man))"

out = fromList [(0, "a"), (1, "a")]

test_tomapping2 = (toMapping2 . postreeS) inp @?= out
where inp = "(ROOT (S (NP (DT The) (NN man)) (VP (VBD did) (RB not) (VP (VB make) (S (NP (PRP$ his

) (NN donkey)) (VP (VB see))))) (. .)))"
out = fromList [(0, "b"), (1, "b"), (5, "a"), (6, "a")]

prop_tomapping :: PosTree → Bool
prop_tomapping postree = cntNp postree ≥ (length . nub . elems . toMapping2) postree
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where cntNp (Leaf _ _) = 0
cntNp (Phrase "NP" subs) = 1 + sum (map cntNp subs)
cntNp (Phrase _ subs) = sum (map cntNp subs)

test_stanford = (sentence, refs, deps) @?= (sout, rout, dout)
where (sentence, refs, deps) = unsafePerformIO (runOnFile "test.xml")

sout = ["if", "a", "farmer", "own", "a", "donkey", ",", "he", "beat", "it"]
rout = fromList [(1, "e"), (2, "e"), (4, "f"), (5, "f"), (7, "e"), (9, "f")]
dout = Dep 8 [("advcl",Dep 3 [("mark",Dep 0 []),("nsubj",Dep 2 [("det",Dep 1 [])]),("dobj",

Dep 5 [("det",Dep 4 [])])]),("nsubj",Dep 7 []),("dobj",Dep 9 [])]

Listing 8: src/Utils.hs
module Utils (wrap, replace) where

import Data.List (isPrefixOf)

-- This is a standard subtring replacement function
replace :: String → String → String → String
replace pat repl target
| target == "" = ""
| pat ‘isPrefixOf‘ target = repl++replace pat repl (drop (length pat) target)
| otherwise = head target : replace pat repl (tail target)

-- This is used for pretty printing
wrap :: Int → (String, Int) → String
wrap n (p, k) | k > n = "("++p++")"

| otherwise = p
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