
1 10 100 1000 10000

900

800

700

600

500

400

300

Cluster + Learn iterations

Optimal, 1 sparse
Optimal, 2 sparse
Algorithm 2

M
SE

103 104 105 106

Best of 10 epochs

Number of parameters for Largest Tables

Full Embedding Table
Product Quantization
Deep Hash Embeddings
The Hashing Trick
CE with Concatenation
CCE (This paper)

0.458

0.456

0.454

0.452

0.450

BC
E

4 4 4 4

1000

+ + + +

500

500

16

1000

+

16

500

500

Henry Tsang
Meta

Thomas Ahle
Normal Computing

BETTER COMPRESSION BY
COMBINING HASHING
AND CLUSTERING

CLUSTERING THE SKETCH:
DYNAMIC COMPRESSION FOR

EMBEDDING TABLES

Embedding Tables
We address the challenges associated with large
categorical feature tables in Recommendation
Systems by co-learning a hash projection matrix and a
set of embeddings. The hash projections are learned
by occasionally decompressing and performing k-
means clustering on the embeddings, and the
embeddings are learned by SGD.

The methods can be used in any Neural Network that
uses embedding tables, and is today using hashing or
quantization.

Table Compression
Compositional Embeddings, CE:
Each ID is hashed to a location in each of,
say, 4 different tables. The 4 vectors stored
there are concatenated into the final
embedding vector. Given the large number
of possible combinations (here 1000⁴), it is
unlikely that two IDs get assigned the exact
same embedding vector, even if they may
share each part with some other IDs.

Clustered Compositional Embeddings, CCE:
Combining Compositional Embeddings with
Sum Hashing allows us to introduce a
clustering step, shown in the big central
picture on the poster.
Each ID gets assigned a vector that is the
concatenation of smaller sums. In each of
the four blocks, we apply clustering every
epoch, setting the results in the green
tables, and replacing the hash functions in
the blue tables with new random values.

The Hashing Trick:
Each ID is hashed to
one location in a table
(here with 1000 rows)
and it is assigned the
embedding vector
stored at the location.
Many IDs are likely to
share the same vector.

Sum Hash Embeddings:
Each ID is hashed to
two rows, one per table,
and its embedding
vector is assigned to be
the sum of those two
vectors. Sometimes a
separate table is used
for weights.

Our repository github.com/thomasahle/cce implements more than 11 different table
compression algorithms. 

Starting from a random embedding table, each ID is hashed to
a vector in each of 2 small tables.
During training, the embedding of an ID is taken to be the
mean of the two referenced code words.
After training for an epoch, the vectors for all (or a sample of)
the IDs are computed and clustered. This leaves a new small
table in which similar IDs are represented by the same vector.
We can choose to combine the cluster centers with a new
random table (and new hash function), after which the
process can be repeated for an increasingly better
understanding of which ID should be combined.

Single iteration of CCE
1.

2.

3.

4.

Train

Start

Hash
4.

1.

3.

Cluster
Retra

in

2.

thomasahle.github.io/cce 

https://thomasahle.github.io/cce

